Suppr超能文献

使用具有时变预测因子的统计模型预测澳大利亚急诊科的每日就诊人数。

Forecasting daily counts of patient presentations in Australian emergency departments using statistical models with time-varying predictors.

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

Emergency Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia.

出版信息

Emerg Med Australas. 2020 Aug;32(4):618-625. doi: 10.1111/1742-6723.13481. Epub 2020 Feb 17.

Abstract

OBJECTIVE

This research aimed to (i) assess the effects of time-varying predictors (day of the week, month, year, holiday, temperature) on daily ED presentations and (ii) compare the accuracy of five methods for forecasting ED presentations, including four statistical methods and a machine learning approach.

METHODS

Predictors of ED presentations were assessed using generalised additive models (GAMs), generalised linear models, multiple linear regression models, seasonal autoregressive integrated moving average models and random forest. The accuracy of short-term (14 days), mid-term (30 days) and long-term (365 days) forecasts were compared using two measures of forecasting error.

RESULTS

The data are the numbers of presentations to public hospital EDs in South-East Queensland, Australia, from 2009 to 2015. ED presentations are largely affected by year of presentation, and to a lesser extent by month, day of the week and holidays. Maximum daily temperature is also a significant predictor of ED presentations. Of the four statistical models considered, the GAM had the greatest forecasting accuracy, and produced consistent and coherent forecasts, likely due to its flexibility in modelling complex time-varying effects. The random forest machine learning approach had the lowest forecasting accuracy, likely due to overfitting the data.

CONCLUSIONS

Calendar and temperature variables, not previously considered in the Australian literature, were found to significantly impact ED presentations. This study also demonstrates the potential of GAMs as a dual explanatory and forecasting method for the modelling, and more accurate prediction, of ED presentations.

摘要

目的

本研究旨在:(i)评估时间变化预测因子(星期几、月份、年份、节假日、温度)对每日急诊就诊的影响;(ii)比较五种预测急诊就诊的方法的准确性,包括四种统计方法和一种机器学习方法。

方法

使用广义可加模型(GAMs)、广义线性模型、多元线性回归模型、季节性自回归综合移动平均模型和随机森林评估急诊就诊的预测因子。使用两种预测误差度量标准比较短期(14 天)、中期(30 天)和长期(365 天)预测的准确性。

结果

数据是澳大利亚昆士兰州东南部公立医院急诊就诊的人数,时间范围为 2009 年至 2015 年。急诊就诊主要受就诊年份的影响,其次受月份、星期几和节假日的影响。最高日温度也是急诊就诊的重要预测因子。在所考虑的四个统计模型中,GAM 的预测准确性最高,并且产生了一致且连贯的预测结果,这可能是由于其在建模复杂时间变化效应方面的灵活性。随机森林机器学习方法的预测准确性最低,这可能是由于对数据过度拟合。

结论

日历和温度变量以前在澳大利亚文献中未被考虑,结果发现它们对急诊就诊有显著影响。本研究还展示了 GAMs 作为一种用于建模和更准确预测急诊就诊的双重解释和预测方法的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验