Suppr超能文献

一种基于需求预测和线性规划的磁共振成像(MRI)检查资源分配优化方案。

An optimization protocol for MRI examination resource allocation based on demand forecasting and linear programming.

作者信息

Zhou Zhongbin, Zhou Hanyu, Qiao Yuanyuan, Gao Zihan, Yang Ying

机构信息

The 6th Medical Center of PLA General Hospital, Beijing, 100048, China.

China Unicom Beijing Branch, Beijing, 100006, China.

出版信息

Sci Rep. 2025 Apr 29;15(1):15076. doi: 10.1038/s41598-025-98817-z.

Abstract

The accessibility of medical services in Mainland China had been on the rise, leading to a surge in the number of Magnetic Resonance Imaging (MRI) scans. This increase had caused substantial delays in MRI examination queues at large hospitals. With MRI equipment and exams being costly, over-purchasing machines could lead to underutilization of resources. It was, therefore, crucial to devise a comprehensive method that could shorten patient wait times and optimize the use of medical resources within hospitals. The research had utilized daily MRI examination application data from a hospital covering the period from July 1, 2017, to November 30, 2022. The Autoregressive Integrated Moving Average (ARIMA) model and the AutoRegressive Integrated Moving Average with exogenous (ARIMAX) model were developed using SAS (version 9.3) software. Moreover, Non-AutoRegressive (NAR) and Non-AutoRegressive with exogenous (NARX) models were built using MATLAB (version R2015b) to forecast future MRI examination demands. Integrating the ARIMAX model with the NARX model, an ARIMAX-NARX model had been constructed.The predictive accuracy of these models was then assessed and compared. Based on the prediction outcomes, an Integer Linear Programming model was employed to calculate the optimal number of MRI examinations per machine per day, targeting cost reduction. An optimization flowchart for MRI examination resource allocation was developed by integrating critical process components, thus streamlining and systematizing the optimization process to improve efficiency. Analysis of the data revealed a weekly cyclical trend in MRI examination applications. Among the ARIMA, ARIMAX, NAR, NARX, ARIMAX-NARX models evaluated for their predictive skills, the NARX model emerged as the most accurate for forecasting. An Integer Linear Programming (ILP) model was utilized to plan the number of examinations for each MRI machine, effectively reducing costs. An optimization flowchart was developed to integrate key factors in MRI examination resource allocation, streamlining and systematizing the optimization process to enhance work efficiency. This study offers a comprehensive protocol for optimizing MRI examination resource allocation, combining the predictive power of the NARX model, the planning capabilities of the Integer Linear Programming model, and the integration of other relevant factors via an optimization flowchart.

摘要

中国大陆医疗服务的可及性一直在提高,导致磁共振成像(MRI)扫描数量激增。这种增长导致大型医院MRI检查排队出现大量延误。由于MRI设备和检查成本高昂,过度购置机器可能导致资源利用不足。因此,设计一种全面的方法来缩短患者等待时间并优化医院内医疗资源的使用至关重要。该研究使用了一家医院2017年7月1日至2022年11月30日期间的每日MRI检查申请数据。使用SAS(9.3版)软件开发了自回归积分移动平均(ARIMA)模型和带外生变量的自回归积分移动平均(ARIMAX)模型。此外,使用MATLAB(R2015b版)构建了非自回归(NAR)和带外生变量的非自回归(NARX)模型来预测未来的MRI检查需求。将ARIMAX模型与NARX模型相结合,构建了ARIMAX-NARX模型。然后评估并比较了这些模型的预测准确性。基于预测结果,采用整数线性规划模型计算每台MRI机器每天的最佳检查次数,以降低成本。通过整合关键流程组件,开发了MRI检查资源分配优化流程图,从而简化并系统化优化过程以提高效率。数据分析揭示了MRI检查申请的每周周期性趋势。在评估预测能力的ARIMA、ARIMAX、NAR、NARX、ARIMAX-NARX模型中,NARX模型在预测方面最为准确。使用整数线性规划(ILP)模型规划每台MRI机器的检查次数,有效降低了成本。开发了一个优化流程图,以整合MRI检查资源分配中的关键因素,简化并系统化优化过程以提高工作效率。本研究提供了一个优化MRI检查资源分配的综合方案,结合了NARX模型的预测能力、整数线性规划模型的规划能力以及通过优化流程图整合其他相关因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1717/12041548/acf7b8a14c2b/41598_2025_98817_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验