预测患者到达人数特征的系统评价

A Systematic Review of Features Forecasting Patient Arrival Numbers.

作者信息

Förstel Markus, Haas Oliver, Förstel Stefan, Maier Andreas, Rothgang Eva

机构信息

Author Affiliations: Ostbayerische Technische Hochschule Amberg-Weiden (Mr M. Förstel, Dr Haas, Mr S. Förstel, Dr Rothgang) and Friedrich-Alexander-Universität Erlangen-Nürnberg (Dr Haas, Mr S. Förstel, Dr Maier), Germany.

出版信息

Comput Inform Nurs. 2025 Jan 1;43(1):e01197. doi: 10.1097/CIN.0000000000001197.

Abstract

Adequate nurse staffing is crucial for quality healthcare, necessitating accurate predictions of patient arrival rates. These forecasts can be determined using supervised machine learning methods. Optimization of machine learning methods is largely about minimizing the prediction error. Existing models primarily utilize data such as historical patient visits, seasonal trends, holidays, and calendars. However, it is unclear what other features reduce the prediction error. Our systematic literature review identifies studies that use supervised machine learning to predict patient arrival numbers using nontemporal features, which are features not based on time or dates. We scrutinized 26 284 studies, eventually focusing on 27 relevant ones. These studies highlight three main feature groups: weather data, internet search and usage data, and data on (social) interaction of groups. Internet data and social interaction data appear particularly promising, with some studies reporting reduced errors by up to 33%. Although weather data are frequently used, its utility is less clear. Other potential data sources, including smartphone and social media data, remain largely unexplored. One reason for this might be potential data privacy challenges. In summary, although patient arrival prediction has become more important in recent years, there are still many questions and opportunities for future research on the features used in this area.

摘要

充足的护士配备对优质医疗保健至关重要,因此需要准确预测患者到达率。这些预测可以使用监督式机器学习方法来确定。机器学习方法的优化主要是关于最小化预测误差。现有模型主要利用历史患者就诊、季节性趋势、节假日和日历等数据。然而,尚不清楚还有哪些其他特征可以减少预测误差。我们的系统文献综述确定了使用监督式机器学习利用非时间特征(即不基于时间或日期的特征)来预测患者到达人数的研究。我们仔细审查了26284项研究,最终聚焦于27项相关研究。这些研究突出了三个主要特征组:天气数据、互联网搜索和使用数据以及群体(社交)互动数据。互联网数据和社交互动数据显得特别有前景,一些研究报告称误差减少了高达33%。虽然天气数据经常被使用,但其效用尚不太明确。其他潜在数据来源,包括智能手机和社交媒体数据,在很大程度上仍未得到探索。造成这种情况的一个原因可能是潜在的数据隐私挑战。总之,尽管近年来患者到达预测变得更加重要,但在该领域所使用的特征方面仍有许多问题和未来研究的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e1a/11709000/38813bebcbe3/cin-43-e01197-g001.jpg

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索