Dai Yu, Yang Dongpeng, Yu Danping, Xie Songhai, Wang Biwei, Bu Juan, Shen Bin, Feng Wei, Li Fuyou
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
School of Chemistry and Chemical Engineering, Jiangxi Engineering Laboratory of Waterborne Coating, Jiangxi Science and Technology Normal University, Nanchang Jiangxi, 330013, People's Republic of China.
Nanoscale. 2020 Feb 27;12(8):5075-5083. doi: 10.1039/c9nr10813k.
Fabricating lanthanide doped up-conversion luminescence based nanocomposites has drawn increasing attention in nanoscience and nanotechnology. Although challenging in precise synthesis, structure manipulation and interfacial engineering, fabricating dendritic mesoporous silica coated up-conversion nanoparticles (UCNP@dMSNs) with a tunable pore size is of great importance for the functionalization and application of UCNPs. Herein, we report a strategy to prepare uniform monodisperse UCNP@dMSNs with a core-shell structure. The silica shell has tunable center-radial and dendritic mesoporous channels. The synthesis was carried out in the heterogeneous oil-water microemulsion phase of the Winsor III system reaction system, which allows silica to be deposited directly on hydrophobic UCNPs through the self-anchoring of micelle complexes on the oleic acid ligand. The average pore size of UCNP@dMSNs could be tailored from ∼10 to ∼35 nm according to the varied amounts of co-solvent in the mixture. The microemulsion approach could also be used to prepare hierarchical UCNP@dMSNs with a multi-generational mesostructure. The resultant UCNP@dMSNs exhibit the unique advantage of loading "guest" nanoparticles in a self-absorption manner. We proved that Cu1.8S NPs (∼10 nm), Au NPs (∼10 nm) and Fe3O4 NPs (∼25 nm) could be incorporated in UCNP@dMSNs, which in turn validates the high adsorption capacity of UCNP@dMSNs.
制备基于镧系元素掺杂上转换发光的纳米复合材料在纳米科学和纳米技术领域引起了越来越多的关注。尽管在精确合成、结构操纵和界面工程方面具有挑战性,但制备孔径可调的树枝状介孔二氧化硅包覆上转换纳米粒子(UCNP@dMSNs)对于UCNPs的功能化和应用至关重要。在此,我们报道了一种制备具有核壳结构的均匀单分散UCNP@dMSNs的策略。二氧化硅壳具有可调的中心-径向和树枝状介孔通道。合成在Winsor III系统反应体系的非均相油水微乳液相中进行,这使得二氧化硅能够通过胶束复合物在油酸配体上的自锚定直接沉积在疏水性UCNPs上。根据混合物中助溶剂含量的变化,UCNP@dMSNs的平均孔径可在约10至约35nm之间进行调整。微乳液法还可用于制备具有多代介观结构的分级UCNP@dMSNs。所得的UCNP@dMSNs具有以自吸收方式负载“客体”纳米粒子的独特优势。我们证明了Cu1.8S NPs(约10nm)、Au NPs(约10nm)和Fe3O4 NPs(约25nm)可以掺入UCNP@dMSNs中,这反过来验证了UCNP@dMSNs的高吸附能力。