文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米工程化硅基生物材料在再生医学中的应用

Nanoengineered Silica-Based Biomaterials for Regenerative Medicine.

机构信息

Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.

Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt.

出版信息

Int J Mol Sci. 2024 Jun 1;25(11):6125. doi: 10.3390/ijms25116125.


DOI:10.3390/ijms25116125
PMID:38892312
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11172759/
Abstract

The paradigm of regenerative medicine is undergoing a transformative shift with the emergence of nanoengineered silica-based biomaterials. Their unique confluence of biocompatibility, precisely tunable porosity, and the ability to modulate cellular behavior at the molecular level makes them highly desirable for diverse tissue repair and regeneration applications. Advancements in nanoengineered silica synthesis and functionalization techniques have yielded a new generation of versatile biomaterials with tailored functionalities for targeted drug delivery, biomimetic scaffolds, and integration with stem cell therapy. These functionalities hold the potential to optimize therapeutic efficacy, promote enhanced regeneration, and modulate stem cell behavior for improved regenerative outcomes. Furthermore, the unique properties of silica facilitate non-invasive diagnostics and treatment monitoring through advanced biomedical imaging techniques, enabling a more holistic approach to regenerative medicine. This review comprehensively examines the utilization of nanoengineered silica biomaterials for diverse applications in regenerative medicine. By critically appraising the fabrication and design strategies that govern engineered silica biomaterials, this review underscores their groundbreaking potential to bridge the gap between the vision of regenerative medicine and clinical reality.

摘要

再生医学的范式正在发生转变,纳米工程化的硅基生物材料应运而生。它们具有独特的生物相容性、可精确调节的孔隙率以及在分子水平上调节细胞行为的能力,使其成为各种组织修复和再生应用的理想选择。纳米工程化硅合成和功能化技术的进步,产生了新一代多功能生物材料,具有针对靶向药物输送、仿生支架以及与干细胞治疗相结合的定制功能。这些功能有可能优化治疗效果、促进增强的再生,并调节干细胞行为以获得更好的再生结果。此外,硅的独特性质通过先进的生物医学成像技术促进了非侵入性诊断和治疗监测,为再生医学提供了更全面的方法。本综述全面考察了纳米工程化硅生物材料在再生医学中的多种应用。通过批判性地评估控制工程化硅生物材料的制造和设计策略,本综述强调了它们在弥合再生医学的愿景与临床现实之间差距方面的开创性潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/0b8fb691a9c9/ijms-25-06125-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/5330d93d7248/ijms-25-06125-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/a1f5a2fff4c3/ijms-25-06125-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/34c592a650a5/ijms-25-06125-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/9189bc4c4b89/ijms-25-06125-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/f4bce8e837db/ijms-25-06125-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/6b8739c23af8/ijms-25-06125-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/5e75aa99952b/ijms-25-06125-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/e706121b5b25/ijms-25-06125-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/b24faea39abc/ijms-25-06125-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/16a59194f6dc/ijms-25-06125-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/8d799156de18/ijms-25-06125-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/0b8fb691a9c9/ijms-25-06125-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/5330d93d7248/ijms-25-06125-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/a1f5a2fff4c3/ijms-25-06125-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/34c592a650a5/ijms-25-06125-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/9189bc4c4b89/ijms-25-06125-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/f4bce8e837db/ijms-25-06125-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/6b8739c23af8/ijms-25-06125-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/5e75aa99952b/ijms-25-06125-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/e706121b5b25/ijms-25-06125-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/b24faea39abc/ijms-25-06125-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/16a59194f6dc/ijms-25-06125-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/8d799156de18/ijms-25-06125-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894b/11172759/0b8fb691a9c9/ijms-25-06125-g012.jpg

相似文献

[1]
Nanoengineered Silica-Based Biomaterials for Regenerative Medicine.

Int J Mol Sci. 2024-6-1

[2]
Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering.

Molecules. 2020-11-13

[3]
Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

Ann Biomed Eng. 2014-7

[4]
Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications.

Tissue Eng Part B Rev. 2020-4

[5]
The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.

Curr Med Chem. 2016

[6]
Oligoaniline-based conductive biomaterials for tissue engineering.

Acta Biomater. 2018-4-4

[7]
[Important contribution and necessity of stem cells scaffolds for regenerative medicine and the therapeutic applications].

Nihon Rinsho. 2008-5

[8]
Advances in Regenerative Medicine and Biomaterials.

Methods Mol Biol. 2023

[9]
Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.

Biomater Sci. 2018-10-24

[10]
Porous-based biomaterials for tissue engineering and drug delivery applications.

Biomatter. 2012

引用本文的文献

[1]
Special Issue: "Application of Nanotechnology in Regenerative Medicine".

Int J Mol Sci. 2025-7-2

[2]
Biomolecule-Based Coacervation: Mechanisms, Applications, and Future Perspectives in Biomedical and Biotechnological Fields.

Biomolecules. 2025-6-13

[3]
Emerging biomaterials and bio-nano interfaces in pulmonary hypertension therapy: transformative strategies for personalized treatment.

Front Bioeng Biotechnol. 2025-5-9

[4]
An Overview of Potential Applications of Environmentally Friendly Hybrid Polymeric Materials.

Polymers (Basel). 2025-1-20

[5]
Multifunctional Biocomposites: Synthesis, Characterization, and Prospects for Regenerative Medicine and Controlled Drug Delivery.

Molecules. 2024-7-25

本文引用的文献

[1]
Biominerals and Bioinspired Materials in Biosensing: Recent Advancements and Applications.

Int J Mol Sci. 2024-4-25

[2]
Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review.

Int J Mol Sci. 2024-2-7

[3]
iRGD mediated pH-responsive mesoporous silica enhances drug accumulation in tumors.

Eur J Pharm Sci. 2024-4-1

[4]
Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine.

Tissue Eng Part A. 2024-7

[5]
Use of biosilica to improve loading and delivery of bone morphogenic protein 2.

Int J Biol Macromol. 2024-1

[6]
Dual-color core-shell silica nanosystems for advanced super-resolution biomedical imaging.

Nanoscale Adv. 2023-8-25

[7]
Osteoimmunity-regulating nanosilicate-reinforced hydrogels for enhancing osseointegration.

J Mater Chem B. 2023-10-25

[8]
Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease.

Clin Ther. 2023-11

[9]
Biomimetic Silica Particles with Self-Loading BMP-2 Knuckle Epitope Peptide and Its Delivery for Bone Regeneration.

Pharmaceutics. 2023-3-25

[10]
Synthesis and In Vitro Testing of YVO:Eu@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells.

Molecules. 2022-12-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索