Suppr超能文献

利用电子健康记录数据识别罕见病患者:凯撒永久南加州膜性肾病队列。

Identifying Patients with Rare Disease Using Electronic Health Record Data: The Kaiser Permanente Southern California Membranous Nephropathy Cohort.

机构信息

Division of Nephrology and Hypertension, Los Angeles Medical Center, CA.

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA.

出版信息

Perm J. 2020;24. doi: 10.7812/TPP/19.126. Epub 2020 Feb 7.

Abstract

INTRODUCTION

Developing a reliable means to identify and study real-world populations of patients with membranous nephropathy (MN) using electronic health records (EHRs) would help advance glomerular disease research. Identifying MN cases using EHRs is limited by the need for manual reviews of biopsy reports.

OBJECTIVE

To evaluate the accuracy of identifying patients with biopsy-proven MN using the EHR in a large, diverse population of an integrated health system.

METHODS

A retrospective cohort study was performed between June 28, 1999, and June 25, 2015, among patients with kidney biopsy results (N = 4723), which were manually reviewed and designated as MN or non-MN. The sensitivity, specificity, and positive predictive value (PPV) of International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes were determined using 2 approaches: 1) clinical (MN-specific codes 581.1, 582.1, or 583.1) and 2) agnostic/data-derived (codes selected from supervised learning at the highest predictive performance).

RESULTS

One year after biopsy, the sensitivity and specificity of an MN diagnosis were 86% and 76%, respectively, but the PPV was 26%. The data-driven approach detected that using only 2 codes (581.1 or 583.1) improved specificity to 94% and PPV to 58%, with a small decrease in sensitivity to 83%. When any code was reported at least 3 times, specificity was 98%; PPV, 78%; and sensitivity, 64%.

DISCUSSION

Our findings suggest that ICD-9 diagnosis codes might be a convenient tool to identify patients with MN using EHR and/or administrative claims information. Codes selected from supervised learning achieved better overall performance, suggesting the potential of developing data-driven methods.

摘要

简介

利用电子健康记录(EHR)开发一种可靠的方法来识别和研究膜性肾病(MN)的真实患者群体,将有助于推进肾小球疾病研究。使用 EHR 识别 MN 病例受到需要手动审查活检报告的限制。

目的

评估在一个大型、多样化的综合医疗系统中,使用 EHR 识别经活检证实的 MN 患者的准确性。

方法

一项回顾性队列研究于 1999 年 6 月 28 日至 2015 年 6 月 25 日在接受肾脏活检的患者中进行(N=4723),这些患者的活检结果经过手动审查并指定为 MN 或非-MN。使用 2 种方法确定国际疾病分类,第 9 版(ICD-9)诊断代码的敏感性、特异性和阳性预测值(PPV):1)临床(MN 特异性代码 581.1、582.1 或 583.1)和 2)无偏见/数据驱动(从最高预测性能的监督学习中选择的代码)。

结果

在活检后 1 年,MN 诊断的敏感性和特异性分别为 86%和 76%,但 PPV 为 26%。数据驱动方法发现,仅使用 2 个代码(581.1 或 583.1)可将特异性提高到 94%,PPV 提高到 58%,敏感性略有下降至 83%。当至少报告 3 次任何代码时,特异性为 98%;PPV,78%;敏感性,64%。

讨论

我们的研究结果表明,ICD-9 诊断代码可能是使用 EHR 和/或行政索赔信息识别 MN 患者的一种便捷工具。从监督学习中选择的代码实现了更好的整体性能,这表明开发数据驱动方法的潜力。

相似文献

引用本文的文献

本文引用的文献

8
Glomerular Diseases: Registries and Clinical Trials.肾小球疾病:登记处与临床试验
Clin J Am Soc Nephrol. 2016 Dec 7;11(12):2234-2243. doi: 10.2215/CJN.00540116. Epub 2016 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验