Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands. Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
Biomed Mater. 2020 Apr 27;15(3):035017. doi: 10.1088/1748-605X/ab7763.
Additive manufacturing (AM) techniques have provided many opportunities for the rational design of porous metallic biomaterials with complex and precisely controlled topologies that give rise to unprecedented combinations of mechanical, physical, and biological properties. These favorable properties can be enhanced by surface biofunctionalization to enable full tissue regeneration and minimize the risk of implant-associated infections (IAIs). There is, however, an increasing need to investigate the immune responses triggered by surface biofunctionalized AM porous metals. Here, we studied the immunomodulatory effects of AM porous titanium (Ti-6Al-4V) printed using selective laser melting, and of two additional groups consisting of AM implants surface biofunctionalized using plasma electrolytic oxidation (PEO) with/without silver nanoparticles. The responses of human primary macrophages and human mesenchymal stromal cells (hMSCs) were studied in terms of cell viability, cell morphology and biomarkers of macrophage polarization. Non-treated AM porous titanium triggered a strong pro-inflammatory response in macrophages, albeit combined with signs of anti-inflammatory effects. The PEO treatment of AM porous titanium implants showed a higher potential to induce polarization towards a pro-repair macrophage phenotype. We detected no cytotoxicity against hMSCs in any of the groups. However, the incorporation of silver nanoparticles resulted in strong cytotoxicity against attached macrophages. The results of this study indicate the potential immunomodulatory effects of the AM porous titanium enhanced with PEO treatment, and point towards caution and further research when using silver nanoparticles for preventing IAIs.
增材制造(AM)技术为具有复杂和精确控制拓扑结构的多孔金属生物材料的合理设计提供了许多机会,从而产生了前所未有的机械、物理和生物学性能组合。通过表面生物功能化可以增强这些有利的性能,从而实现完全的组织再生并最大程度地降低与植入物相关的感染(IAI)的风险。然而,人们越来越需要研究表面生物功能化 AM 多孔金属引发的免疫反应。在这里,我们研究了使用选择性激光熔化打印的 AM 多孔钛(Ti-6Al-4V)以及另外两组 AM 植入物的表面生物功能化,这两组 AM 植入物的表面生物功能化分别使用等离子体电解氧化(PEO)和/或银纳米粒子。从细胞活力、细胞形态和巨噬细胞极化的生物标志物的角度研究了人原代巨噬细胞和人间充质基质细胞(hMSC)的免疫调节作用。未经处理的 AM 多孔钛在巨噬细胞中引发了强烈的促炎反应,尽管同时伴有抗炎作用的迹象。AM 多孔钛植入物的 PEO 处理显示出更高的潜力,可以诱导向促修复巨噬细胞表型极化。在任何一组中,我们都没有检测到对 hMSC 的细胞毒性。然而,银纳米粒子的掺入对附着的巨噬细胞具有强烈的细胞毒性。这项研究的结果表明,PEO 处理增强的 AM 多孔钛具有潜在的免疫调节作用,并指出在使用银纳米粒子预防 IAI 时需要谨慎并进一步研究。