Suppr超能文献

利用噪声或不完整数据发现时空动力学模型。

Using noisy or incomplete data to discover models of spatiotemporal dynamics.

作者信息

Reinbold Patrick A K, Gurevich Daniel R, Grigoriev Roman O

机构信息

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.

出版信息

Phys Rev E. 2020 Jan;101(1-1):010203. doi: 10.1103/PhysRevE.101.010203.

Abstract

Sparse regression has recently emerged as an attractive approach for discovering models of spatiotemporally complex dynamics directly from data. In many instances, such models are in the form of nonlinear partial differential equations (PDEs); hence sparse regression typically requires the evaluation of various partial derivatives. However, accurate evaluation of derivatives, especially of high order, is infeasible when the data are noisy, which has a dramatic negative effect on the result of regression. We present an alternative and rather general approach that addresses this difficulty by using a weak formulation of the problem. For instance, it allows accurate reconstruction of PDEs involving high-order derivatives, such as the Kuramoto-Sivashinsky equation, from data with a considerable amount of noise. The flexibility of our approach also allows reconstruction of PDE models that involve latent variables which cannot be measured directly with acceptable accuracy. This is illustrated by reconstructing a model for a weakly turbulent flow in a thin fluid layer, where neither the forcing nor the pressure field is known.

摘要

稀疏回归最近已成为一种有吸引力的方法,可直接从数据中发现时空复杂动力学模型。在许多情况下,此类模型采用非线性偏微分方程(PDE)的形式;因此,稀疏回归通常需要评估各种偏导数。然而,当数据存在噪声时,准确评估导数,尤其是高阶导数是不可行的,这会对回归结果产生巨大的负面影响。我们提出了一种替代且相当通用的方法,通过使用问题的弱形式来解决这一困难。例如,它允许从具有大量噪声的数据中准确重建涉及高阶导数的PDE,如Kuramoto-Sivashinsky方程。我们方法的灵活性还允许重建涉及无法以可接受的精度直接测量的潜在变量的PDE模型。通过重建薄流体层中弱湍流流动的模型来说明这一点,其中驱动和压力场均未知。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验