Suppr超能文献

Externally controlled Lotka-Volterra dynamics in a linearly polarized polariton fluid.

作者信息

Pukrop Matthias, Schumacher Stefan

机构信息

Department of Physics and CeOPP, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.

College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

Phys Rev E. 2020 Jan;101(1-1):012207. doi: 10.1103/PhysRevE.101.012207.

Abstract

Spontaneous formation of transverse patterns is ubiquitous in nonlinear dynamical systems of all kinds. An aspect of particular interest is the active control of such patterns. In nonlinear optical systems this can be used for all-optical switching with transistorlike performance, for example, realized with polaritons in a planar quantum-well semiconductor microcavity. Here we focus on a specific configuration which takes advantage of the intricate polarization dependencies in the interacting optically driven polariton system. Besides detailed numerical simulations of the coupled light-field exciton dynamics, in the present paper we focus on the derivation of a simplified population competition model giving detailed insight into the underlying mechanisms from a nonlinear dynamical systems perspective. We show that such a model takes the form of a generalized Lotka-Volterra system for two competing populations explicitly including a source term that enables external control. We present a comprehensive analysis of both the existence and stability of stationary states in the parameter space spanned by spatial anisotropy and external control strength. We also construct phase boundaries in nontrivial regions and characterize emerging bifurcations. The population competition model reproduces all key features of the switching observed in full numerical simulations of the rather complex semiconductor system and at the same time is simple enough for a fully analytical understanding.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验