Suppr超能文献

用于脑部疾病分析的节点模型连续词典和双线性扩散表示学习

Continuous Dictionary of Nodes Model and Bilinear-Diffusion Representation Learning for Brain Disease Analysis.

作者信息

Liang Jiarui, Yan Tianyi, Huang Yin, Li Ting, Rao Songhui, Yang Hongye, Lu Jiayu, Niu Yan, Li Dandan, Xiang Jie, Wang Bin

机构信息

School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China.

School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Brain Sci. 2024 Aug 13;14(8):810. doi: 10.3390/brainsci14080810.

Abstract

Brain networks based on functional magnetic resonance imaging (fMRI) provide a crucial perspective for diagnosing brain diseases. Representation learning has recently attracted tremendous attention due to its strong representation capability, which can be naturally applied to brain disease analysis. However, traditional representation learning only considers direct and local node interactions in original brain networks, posing challenges in constructing higher-order brain networks to represent indirect and extensive node interactions. To address this problem, we propose the Continuous Dictionary of Nodes model and Bilinear-Diffusion (CDON-BD) network for brain disease analysis. The CDON model is innovatively used to learn the original brain network, with its encoder weights directly regarded as latent features. To fully integrate latent features, we further utilize Bilinear Pooling to construct higher-order brain networks. The Diffusion Module is designed to capture extensive node interactions in higher-order brain networks. Compared to state-of-the-art methods, CDON-BD demonstrates competitive classification performance on two real datasets. Moreover, the higher-order representations learned by our method reveal brain regions relevant to the diseases, contributing to a better understanding of the pathology of brain diseases.

摘要

基于功能磁共振成像(fMRI)的脑网络为脑部疾病的诊断提供了至关重要的视角。表示学习因其强大的表示能力最近受到了极大关注,它可以自然地应用于脑部疾病分析。然而,传统的表示学习仅考虑原始脑网络中的直接和局部节点交互,这在构建高阶脑网络以表示间接和广泛的节点交互方面带来了挑战。为了解决这个问题,我们提出了用于脑部疾病分析的节点连续字典模型和双线性扩散(CDON-BD)网络。CDON模型被创新性地用于学习原始脑网络,其编码器权重直接被视为潜在特征。为了充分整合潜在特征,我们进一步利用双线性池化来构建高阶脑网络。扩散模块旨在捕获高阶脑网络中的广泛节点交互。与最先进的方法相比,CDON-BD在两个真实数据集上展示了具有竞争力的分类性能。此外,我们的方法学习到的高阶表示揭示了与疾病相关的脑区,有助于更好地理解脑部疾病的病理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c615/11352990/a29e67ae4fdf/brainsci-14-00810-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验