Suppr超能文献

使用新型双层次双通道图学习模型对意识障碍进行分类。

Classifying disorders of consciousness using a novel dual-level and dual-modal graph learning model.

机构信息

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.

National Center for Neurological Disorders, Shanghai, 200030, China.

出版信息

J Transl Med. 2024 Oct 21;22(1):950. doi: 10.1186/s12967-024-05729-z.

Abstract

BACKGROUND

Disorders of consciousness (DoC) are a group of conditions that affect the level of awareness and communication in patients. While neuroimaging techniques can provide useful information about the brain structure and function in these patients, most existing methods rely on a single modality for analysis and rarely account for brain injury. To address these limitations, we propose a novel method that integrates two neuroimaging modalities, functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), to enhance the classification of subjects into different states of consciousness.

METHOD AND RESULTS

The main contributions of our work are threefold: first, after constructing a dual-model individual graph using functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we introduce a brain injury mask mechanism that consolidates damaged brain regions into a single graph node, enhancing the modeling of brain injuries and reducing deformation effects. Second, to address over-smoothing, we construct a dual-level graph that dynamically construct a population-level graph with node features from individual graphs, to promote the clustering of similar subjects while distinguishing dissimilar ones. Finally, we employ a subgraph exploration model with task-fMRI data to validate the interpretability of our model, confirming that the selected brain regions are task-relevant in cognition. Our experimental results on data from 89 healthy participants and 204 patients with DoC from Huashan Hospital, Fudan University, demonstrate that our method achieves high accuracy in classifying patients into unresponsive wakefulness syndrome (UWS), minimally conscious state (MCS), or normal conscious state, outperforming current state-of-the-art methods. The explainability results of our method identified a subset of brain regions that are important for consciousness, such as the default mode network, the salience network, the dorsal attention network, and the visual network. Our method also revealed the relationship between brain networks and language processing in consciousness, and showed that language-related subgraphs can distinguish MCS from UWS patients.

CONCLUSION

We proposed a novel graph learning method for classifying DoC based on fMRI and DTI data, introducing a brain injury mask mechanism to effectively handle damaged brains. The classification results demonstrate the effectiveness of our method in distinguishing subjects across different states of consciousness, while the explainability results identify key brain regions relevant to this classification. Our study provides new evidence for the role of brain networks and language processing in consciousness, with potential implications for improving the diagnosis and prognosis of patients with DoC.

摘要

背景

意识障碍(DOC)是一组影响患者意识和沟通水平的病症。虽然神经影像学技术可以提供有关这些患者大脑结构和功能的有用信息,但大多数现有方法仅依赖单一模态进行分析,很少考虑到脑损伤。为了解决这些限制,我们提出了一种新方法,该方法整合了两种神经影像学模式,即功能磁共振成像(fMRI)和弥散张量成像(DTI),以提高对不同意识状态的受试者进行分类的能力。

方法和结果

我们工作的主要贡献有三点:首先,在用功能磁共振成像(fMRI)和弥散张量成像(DTI)构建双模型个体图后,我们引入了脑损伤掩模机制,将受损的脑区整合到单个图节点中,增强了脑损伤的建模能力,并减少了变形效应。其次,为了解决过度平滑的问题,我们构建了一个双层次图,该图使用个体图的节点特征动态构建一个群体水平图,以促进相似主题的聚类,同时区分不同的主题。最后,我们使用具有任务 fMRI 数据的子图探索模型验证了我们模型的可解释性,确认了所选脑区在认知任务中是相关的。我们在复旦大学华山医院的 89 名健康参与者和 204 名意识障碍患者的数据上进行的实验结果表明,我们的方法在将患者分类为无反应性觉醒综合征(UWS)、最小意识状态(MCS)或正常意识状态方面具有很高的准确性,优于当前最先进的方法。我们方法的可解释性结果确定了一组对意识很重要的脑区,例如默认模式网络、突显网络、背侧注意网络和视觉网络。我们的方法还揭示了意识过程中脑网络与语言处理之间的关系,并表明与语言相关的子图可以区分 MCS 和 UWS 患者。

结论

我们提出了一种新的基于 fMRI 和 DTI 数据的意识障碍分类图学习方法,引入了脑损伤掩模机制,有效地处理受损的大脑。分类结果表明,我们的方法在区分不同意识状态的受试者方面具有有效性,而可解释性结果确定了与这种分类相关的关键脑区。我们的研究为脑网络和语言处理在意识中的作用提供了新的证据,这可能对改善意识障碍患者的诊断和预后有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1600/11492684/fee4367a9474/12967_2024_5729_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验