Suppr超能文献

通过深度学习模拟人类分级对眼底图像进行原发性开角型青光眼的自动诊断。

Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning.

机构信息

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

Institute for Public Health, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Sci Rep. 2022 Aug 18;12(1):14080. doi: 10.1038/s41598-022-17753-4.

Abstract

Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facilitate the downstream diagnostic tasks. In this study, we present an automated classification algorithm, GlaucomaNet, to identify POAG using variable fundus photographs from different populations and settings. GlaucomaNet consists of two convolutional neural networks to simulate the human grading process: learning the discriminative features and fusing the features for grading. We evaluated GlaucomaNet on two datasets: Ocular Hypertension Treatment Study (OHTS) participants and the Large-scale Attention-based Glaucoma (LAG) dataset. GlaucomaNet achieved the highest AUC of 0.904 and 0.997 for POAG diagnosis on OHTS and LAG datasets. An ensemble of network architectures further improved diagnostic accuracy. By simulating the human grading process, GlaucomaNet demonstrated high accuracy with increased transparency in POAG diagnosis (comprehensiveness scores of 97% and 36%). These methods also address two well-known challenges in the field: the need for increased image data diversity and relying heavily on perimetry for POAG diagnosis. These results highlight the potential of deep learning to assist and enhance clinical POAG diagnosis. GlaucomaNet is publicly available on https://github.com/bionlplab/GlaucomaNet .

摘要

原发性开角型青光眼(POAG)是全球范围内导致不可逆性失明的主要原因。虽然已经提出了深度学习方法来诊断 POAG,但开发一种稳健且可解释的算法来自动辅助下游诊断任务仍然具有挑战性。在本研究中,我们提出了一种自动化分类算法 GlaucomaNet,用于使用来自不同人群和环境的可变眼底照片来识别 POAG。GlaucomaNet 由两个卷积神经网络组成,用于模拟人类分级过程:学习判别特征并融合特征进行分级。我们在两个数据集上评估了 GlaucomaNet:Ocular Hypertension Treatment Study (OHTS) 参与者和 Large-scale Attention-based Glaucoma (LAG) 数据集。GlaucomaNet 在 OHTS 和 LAG 数据集上分别实现了最高的 AUC 为 0.904 和 0.997,用于 POAG 诊断。网络架构的集成进一步提高了诊断准确性。通过模拟人类分级过程,GlaucomaNet 在 POAG 诊断中表现出了高精度和更高的透明度(综合评分分别为 97%和 36%)。这些方法还解决了该领域的两个众所周知的挑战:需要增加图像数据多样性和严重依赖视野检查来诊断 POAG。这些结果突显了深度学习在辅助和增强临床 POAG 诊断方面的潜力。GlaucomaNet 可在 https://github.com/bionlplab/GlaucomaNet 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4b/9388536/b51fa3ac482d/41598_2022_17753_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验