Suppr超能文献

对抗性表示学习在稳健的患者无关的癫痫发作检测中的应用。

Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection.

出版信息

IEEE J Biomed Health Inform. 2020 Oct;24(10):2852-2859. doi: 10.1109/JBHI.2020.2971610. Epub 2020 Feb 11.

Abstract

Epilepsy is a chronic neurological disorder characterized by the occurrence of spontaneous seizures, which affects about one percent of the worlds population. Most of the current seizure detection approaches strongly rely on patient history records and thus fail in the patient-independent situation of detecting the new patients. To overcome such limitation, we propose a robust and explainable epileptic seizure detection model that effectively learns from seizure states while eliminates the inter-patient noises. A complex deep neural network model is proposed to learn the pure seizure-specific representation from the raw non-invasive electroencephalography (EEG) signals through adversarial training. Furthermore, to enhance the explainability, we develop an attention mechanism to automatically learn the importance of each EEG channels in the seizure diagnosis procedure. The proposed approach is evaluated over the Temple University Hospital EEG (TUH EEG) database. The experimental results illustrate that our model outperforms the competitive state-of-the-art baselines with low latency. Moreover, the designed attention mechanism is demonstrated ables to provide fine-grained information for pathological analysis. We propose an effective and efficient patient-independent diagnosis approach of epileptic seizure based on raw EEG signals without manually feature engineering, which is a step toward the development of large-scale deployment for real-life use.

摘要

癫痫是一种慢性神经系统疾病,其特征是自发性发作,影响世界上大约 1%的人口。目前大多数的癫痫发作检测方法都强烈依赖于患者的病史记录,因此在检测新患者的情况下无法独立进行。为了克服这一限制,我们提出了一种稳健且可解释的癫痫发作检测模型,该模型可以有效地从发作状态中学习,同时消除患者之间的噪声。我们提出了一种复杂的深度神经网络模型,通过对抗训练从原始的非侵入性脑电图 (EEG) 信号中学习纯发作特异性表示。此外,为了提高可解释性,我们开发了一种注意力机制,自动学习每个 EEG 通道在癫痫诊断过程中的重要性。我们在 Temple University Hospital EEG (TUH EEG) 数据库上评估了所提出的方法。实验结果表明,我们的模型在低延迟的情况下优于竞争的最先进基线。此外,所设计的注意力机制能够为病理分析提供细粒度的信息。我们提出了一种基于原始 EEG 信号的有效且高效的患者独立的癫痫发作诊断方法,无需手动特征工程,这是迈向大规模部署用于实际应用的一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验