The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China.
Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Diabetologia. 2020 May;63(5):987-1001. doi: 10.1007/s00125-020-05105-8. Epub 2020 Feb 19.
AIMS/HYPOTHESIS: High-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, was rediscovered to be a 'danger signal' (alarmin) that alerts the immune system once released extracellularly. Therefore, it has been recognised contributing to the pathogenesis of autoimmune diabetes, but its exact impact on the initiation and progression of type 1 diabetes, as well as the related molecular mechanisms, are yet to be fully characterised.
In the current report, we employed NOD mice as a model to dissect the impact of blocking HMGB1 on the prevention, treatment and reversal of type 1 diabetes. To study the mechanism involved, we extensively examined the characteristics of regulatory T cells (Tregs) and their related signalling pathways upon HMGB1 stimulation. Furthermore, we investigated the relevance of our data to human autoimmune diabetes.
Neutralising HMGB1 both delayed diabetes onset and, of particular relevance, reversed diabetes in 13 out of 20 new-onset diabetic NOD mice. Consistently, blockade of HMGB1 prevented islet isografts from autoimmune attack in diabetic NOD mice. Using transgenic reporter mice that carry a Foxp3 lineage reporter construct, we found that administration of HMGB1 impairs Treg stability and function. Mechanistic studies revealed that HMGB1 activates receptor for AGE (RAGE) and toll-like receptor (TLR)4 to enhance phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) signalling, thereby impairing Treg stability and functionality. Indeed, high circulating levels of HMGB1 in human participants with type 1 diabetes contribute to Treg instability, suggesting that blockade of HMGB1 could be an effective therapy against type 1 diabetes in clinical settings.
CONCLUSIONS/INTERPRETATION: The present data support the possibility that HMGB1 could be a viable therapeutic target to prevent the initiation, progression and recurrence of autoimmunity in the setting of type 1 diabetes.
目的/假设:高迁移率族蛋白 B1(HMGB1)是一种进化上保守的染色体蛋白,它被重新发现为一种“危险信号”(警报素),一旦释放到细胞外,就会向免疫系统发出警报。因此,它被认为是自身免疫性糖尿病发病机制的一部分,但它对 1 型糖尿病的发生和进展的确切影响以及相关的分子机制尚未完全阐明。
在本报告中,我们使用 NOD 小鼠作为模型,剖析阻断 HMGB1 对 1 型糖尿病的预防、治疗和逆转的影响。为了研究所涉及的机制,我们广泛研究了 HMGB1 刺激后调节性 T 细胞(Tregs)及其相关信号通路的特征。此外,我们还研究了我们的数据与人类自身免疫性糖尿病的相关性。
中和 HMGB1 不仅延迟了糖尿病的发病,而且特别重要的是,逆转了 20 只新发病的 NOD 糖尿病小鼠中的 13 只的糖尿病。同样,阻断 HMGB1 可防止糖尿病 NOD 小鼠的胰岛同种异体移植物受到自身免疫攻击。使用携带 Foxp3 谱系报告基因构建体的转基因报告小鼠,我们发现 HMGB1 可破坏 Treg 的稳定性和功能。机制研究表明,HMGB1 通过激活晚期糖基化终产物受体(RAGE)和 Toll 样受体 4(TLR4)来增强磷酸肌醇 3-激酶(PI3K)-Akt-雷帕霉素靶蛋白(mTOR)信号通路,从而破坏 Treg 的稳定性和功能。事实上,1 型糖尿病患者循环中高水平的 HMGB1 导致 Treg 不稳定,提示阻断 HMGB1 可能是 1 型糖尿病临床治疗的有效方法。
结论/解释:本研究数据支持 HMGB1 可能成为预防 1 型糖尿病自身免疫起始、进展和复发的可行治疗靶点的可能性。