Suppr超能文献

使用 bulk 和单细胞方法将癌症分子变异性转化为个性化信息。

Translating Cancer Molecular Variability into Personalized Information Using Bulk and Single Cell Approaches.

机构信息

Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.

出版信息

Proteomics. 2020 Jul;20(13):e1900227. doi: 10.1002/pmic.201900227. Epub 2020 Mar 8.

Abstract

Cancer research is striving toward new frontiers of assigning the correct personalized drug(s) to a given patient. However, extensive tumor heterogeneity poses a major obstacle. Tumors of the same type often respond differently to therapy, due to patient-specific molecular aberrations and/or untargeted tumor subpopulations. It is frequently not possible to determine a priori which patients will respond to a certain therapy or how an efficient patient-specific combined therapy should be designed. Large-scale datasets have been growing at an accelerated pace and various technologies and analytical tools for single cell and bulk level analyses are being developed to extract significant individualized signals from such heterogeneous data. However, personalized therapies that dramatically alter the course of the disease remain scarce, and most tumors still respond poorly to medical care. In this review, the basic concepts of bulk and single cell approaches are discussed, as well as their emerging role in individualized designs of drug therapies, including the advantages and limitations of their applications in personalized medicine.

摘要

癌症研究正在努力开拓新的前沿领域,为特定患者分配正确的个性化药物。然而,广泛的肿瘤异质性构成了一个主要障碍。由于患者特异性分子异常和/或未靶向的肿瘤亚群,同一类型的肿瘤对治疗的反应往往不同。通常不可能事先确定哪些患者对某种治疗有反应,或者应该如何设计有效的针对患者的联合治疗。大型数据集正在加速增长,用于单细胞和批量水平分析的各种技术和分析工具正在开发中,以从这种异质数据中提取有意义的个体化信号。然而,能够显著改变疾病进程的个性化治疗方法仍然很少,大多数肿瘤对医疗护理的反应仍然不佳。在这篇综述中,讨论了批量和单细胞方法的基本概念,以及它们在药物治疗个体化设计中的新兴作用,包括它们在个性化医学中的应用的优点和局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验