Suppr超能文献

通过鉴定和抑制个体化癌症进程克服头颈部鳞状细胞癌对 EGFR 单药治疗的抵抗。

Overcoming resistance to EGFR monotherapy in HNSCC by identification and inhibition of individualized cancer processes.

机构信息

The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel.

Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.

出版信息

Theranostics. 2022 Jan 1;12(3):1204-1219. doi: 10.7150/thno.64347. eCollection 2022.

Abstract

Therapeutic strategies for advanced head and neck squamous carcinoma (HNSCC) consist of multimodal treatment, including Epidermal Growth Factor Receptor (EGFR) inhibition, immune-checkpoint inhibition, and radio (chemo) therapy. Although over 90% of HNSCC tumors overexpress EGFR, attempts to replace cytotoxic treatments with anti-EGFR agents have failed due to alternative signaling pathways and inter-tumor heterogeneity. Using protein expression data obtained from hundreds of HNSCC tissues and cell lines we compute individualized signaling signatures using an information-theoretic approach. The approach maps each HNSCC malignancy according to the protein-protein network reorganization in every tumor. We show that each patient-specific signaling signature (PaSSS) includes several distinct altered signaling subnetworks. Based on the resolved PaSSSs we design personalized drug combinations. We show that simultaneous targeting of central hub proteins from each altered subnetwork is essential to selectively enhance the response of HNSCC tumors to anti-EGFR therapy and inhibit tumor growth. Furthermore, we demonstrate that the PaSSS-based drug combinations lead to induced expression of T cell markers and IFN-γ secretion, pointing to higher efficiency of the immune response. The PaSSS-based approach advances our understanding of how individualized therapies should be tailored to HNSCC tumors.

摘要

晚期头颈部鳞状细胞癌(HNSCC)的治疗策略包括多模式治疗,包括表皮生长因子受体(EGFR)抑制、免疫检查点抑制和放化疗。尽管超过 90%的 HNSCC 肿瘤过表达 EGFR,但由于替代信号通路和肿瘤间异质性,尝试用抗 EGFR 药物替代细胞毒性治疗已失败。

我们使用从数百种 HNSCC 组织和细胞系中获得的蛋白质表达数据,使用信息论方法计算个体化信号特征。该方法根据每个肿瘤中的蛋白质-蛋白质网络重排对每个 HNSCC 恶性肿瘤进行映射。我们表明,每个患者特异性信号特征(PaSSS)包括几个不同的改变的信号子网络。基于解析的 PaSSSs,我们设计个性化的药物组合。

我们表明,靶向每个改变的子网络中的中央枢纽蛋白对于选择性增强 HNSCC 肿瘤对抗 EGFR 治疗的反应和抑制肿瘤生长至关重要。此外,我们证明基于 PaSSS 的药物组合导致 T 细胞标记物的诱导表达和 IFN-γ 的分泌,表明免疫反应的效率更高。

基于 PaSSS 的方法推进了我们对个体化治疗应该如何针对 HNSCC 肿瘤进行定制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a2/8771558/7a33baa0a42a/thnov12p1204g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验