Suppr超能文献

用于个性化乳腺癌治疗的多组学数据患者特异性网络

Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data.

作者信息

Cava Claudia, Sabetian Soudabeh, Castiglioni Isabella

机构信息

Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy.

Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Entropy (Basel). 2021 Feb 11;23(2):225. doi: 10.3390/e23020225.

Abstract

The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein-protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug-protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.

摘要

能够设计出正确的个性化药物的新计算方法的开发是癌症研究中的关键治疗问题。然而,肿瘤异质性是开发临床中已有的针对特定患者的单一药物或药物组合的主要障碍。在本研究中,我们开发了一种计算方法,该方法整合了73例基底样乳腺癌样本的拷贝数改变、基因表达和蛋白质相互作用网络。使用生存分析鉴定了2509个具有拷贝数改变的预后基因,并创建了考虑直接相互作用的蛋白质-蛋白质相互作用网络。每个患者由七个改变的枢纽蛋白的特定组合来描述,这些组合充分表征了73例基底样乳腺癌患者。我们考虑药物-蛋白质相互作用为每个患者提出了最佳联合治疗方案。我们的方法能够确认众所周知的癌症相关基因,并提出新的潜在药物靶基因。总之,我们提出了一种乳腺癌新计算方法,以应对肿瘤内异质性,实现个性化癌症治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/7918754/8867ebb53e2d/entropy-23-00225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验