Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
Phys Chem Chem Phys. 2020 Mar 7;22(9):4875-4879. doi: 10.1039/c9cp05584c. Epub 2020 Feb 19.
Structural studies on proteins directly in their native environment are required for a comprehensive understanding of their function. Electron paramagnetic resonance (EPR) spectroscopy and in particular double electron-electron resonance (DEER) distance determination are suited to investigate spin-labeled proteins directly in the cell. The combination of intracellular bioorthogonal labeling with in-cell DEER measurements does not require additional purification or delivery steps of spin-labeled protein to the cells. In this study, we express eGFP in E. coli and use copper-catalyzed azide-alkyne cycloaddition (CuAAC) for the site-directed spin labeling of the protein in vivo, followed by in-cell EPR distance determination. Inter-spin distance measurements of spin-labeled eGFP agree with in vitro measurements and calculations based on the rotamer library of the spin label.
为了全面了解蛋白质的功能,需要对其在天然环境中的结构进行研究。电子顺磁共振(EPR)光谱学,特别是双电子电子共振(DEER)距离测定,适用于直接在细胞中研究自旋标记蛋白。将细胞内生物正交标记与细胞内 DEER 测量相结合,不需要对自旋标记蛋白进行额外的纯化或递送到细胞的步骤。在这项研究中,我们在大肠杆菌中表达 eGFP,并使用铜催化的叠氮-炔环加成(CuAAC)对蛋白质进行定点自旋标记,然后进行细胞内 EPR 距离测定。自旋标记 eGFP 的自旋间距离测量结果与体外测量和基于自旋标记的旋转体文库的计算结果一致。