Suppr超能文献

特定队列的布尔模型在帕金森病进展过程中突出了不同的调控模块。

Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression.

作者信息

Hemedan Ahmed Abdelmonem, Satagopam Venkata, Schneider Reinhard, Ostaszewski Marek

机构信息

Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

出版信息

iScience. 2024 Sep 14;27(10):110956. doi: 10.1016/j.isci.2024.110956. eCollection 2024 Oct 18.

Abstract

Parkinson's disease (PD) involves complex molecular interactions and diverse comorbidities. To better understand its molecular mechanisms, we employed systems medicine approaches using the PD map, a detailed repository of PD-related interactions and applied Probabilistic Boolean Networks (PBNs) to capture the stochastic nature of molecular dynamics. By integrating cohort-level and real-world patient data, we modeled PD's subtype-specific pathway deregulations, providing a refined representation of its molecular landscape. Our study identifies key regulatory biomolecules and pathways that vary across PD subtypes, offering insights into the disease's progression and patient stratification. These findings have significant implications for the development of targeted therapeutic interventions.

摘要

帕金森病(PD)涉及复杂的分子相互作用和多种合并症。为了更好地理解其分子机制,我们采用了系统医学方法,利用帕金森病图谱这一详细的帕金森病相关相互作用知识库,并应用概率布尔网络(PBN)来捕捉分子动力学的随机性。通过整合队列水平和真实世界患者数据,我们对帕金森病亚型特异性通路失调进行了建模,提供了其分子景观的精确表征。我们的研究确定了在不同帕金森病亚型中存在差异的关键调节生物分子和通路,为该疾病的进展和患者分层提供了见解。这些发现对靶向治疗干预的开发具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eaf/11489052/967d2c5ba764/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验