Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain.
Respiratory Department, Hospital de la Santa Creu i Sant Pau and the Biomedical Research Institute (IIb Sant Pau), Barcelona, Spain.
Environ Health Perspect. 2020 Feb;128(2):27003. doi: 10.1289/EHP4178. Epub 2020 Feb 12.
Fuel oil-derived volatile organic compounds (VOCs) inhalation is associated with accidental marine spills. After the petroleum tanker sank off northern Spain in 2002 and the oil rig catastrophe in 2009, subjects involved in environmental decontamination showed signs of ongoing or residual lung disease up to 5 y after the exposure.
We aimed at investigating mechanisms driving persistent respiratory disease by developing an animal model of inhalational exposure to fuel oil-derived VOCs.
Female Wistar and Brown Norway (BN) rats and C57BL mice were exposed to VOCs produced from fuel oil mimicking the spill. Exposed animals inhaled the VOCs 2 h daily, 5 d per week, for 3 wk. Airway responsiveness to methacholine (MCh) was assessed, and bronchoalveolar lavage (BAL) and lung tissues were analyzed after the exposure and following a 2-wk washout.
Consistent with data from human studies, both strains of rats that inhaled fuel oil-derived VOCs developed airway hyperresponsiveness that persisted after the washout period, in the absence of detectable inflammation in any lung compartment. Histopathology and quantitative morphology revealed the development of peripherally distributed pulmonary emphysema, which persisted after the washout period, associated with increased alveolar septal cell apoptosis, microvascular endothelial damage of the lung parenchyma, and inhibited expression of vascular endothelial growth factor (VEGF).
In this rat model, fuel oil VOCs inhalation elicited alveolar septal cell apoptosis, likely due to DNA damage. In turn, the development of a peculiar pulmonary emphysema pattern altered lung mechanics and caused persistent noninflammatory airway hyperresponsiveness. Such findings suggest to us that humans might also respond to VOCs through physiopathological pathways different from those chiefly involved in typical cigarette smoke-driven emphysema in chronic obstructive pulmonary disease (COPD). If so, this study could form the basis for a novel disease mechanism for lasting respiratory disease following inhalational exposure to catastrophic fuel oil spills. https://doi.org/10.1289/EHP4178.
燃油衍生挥发性有机化合物(VOCs)吸入与意外的海上溢油事件有关。2002 年西班牙北部一艘油轮沉没,2009 年石油钻井平台灾难发生后,参与环境净化的人员在暴露后长达 5 年的时间里出现了持续或残留的肺部疾病迹象。
我们旨在通过开发吸入燃油衍生 VOCs 的动物模型来研究导致持续性呼吸道疾病的机制。
雌性 Wistar 和 Brown Norway(BN)大鼠和 C57BL 小鼠暴露于模拟溢油的燃油衍生 VOCs。暴露动物每天吸入 VOCs 2 小时,每周 5 天,持续 3 周。在暴露后和 2 周洗脱期后,评估对乙酰甲胆碱(MCh)的气道反应性,并进行支气管肺泡灌洗(BAL)和肺组织分析。
与人类研究数据一致,吸入燃油衍生 VOCs 的两种大鼠品系均出现气道高反应性,在洗脱期后仍持续存在,任何肺区均未检测到炎症。组织病理学和定量形态学显示,在外周分布的肺气肿发展,在洗脱期后仍持续存在,与肺泡隔细胞凋亡增加、肺实质微血管内皮损伤和血管内皮生长因子(VEGF)表达抑制相关。
在该大鼠模型中,燃油 VOCs 吸入引发肺泡隔细胞凋亡,可能是由于 DNA 损伤。反过来,一种特殊的肺气肿模式的发展改变了肺力学,并导致持续的非炎症性气道高反应性。这些发现使我们认为,人类也可能通过与慢性阻塞性肺疾病(COPD)中主要与典型香烟烟雾驱动的肺气肿有关的生理病理途径不同的途径对 VOCs 产生反应。如果是这样,这项研究可以为灾难性燃油溢油吸入暴露后持续呼吸道疾病的新发病机制奠定基础。https://doi.org/10.1289/EHP4178.