Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany.
Faculty of Biology, Ludwig-Maximilians Universität, 82152 München, Germany.
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 30;375(1795):20190339. doi: 10.1098/rstb.2019.0339. Epub 2020 Feb 10.
Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
在过去的 20 年左右,我们对先前被认为是“自私的”或“垃圾”的 DNA 的作用的认识发生了巨大的变化。哺乳动物基因组中非编码部分的很大一部分具有重复性质,可分为卫星或转座子。虽然重复元件可以从其扩增的角度被称为自私的,但这些事件肯定已经被宿主所利用,这表明在这种自然选择的主体中,宿主可能具有利他的功能。事实上,已经有大量转座子调节宿主基因组功能输出的例子被记录下来。转座子为大规模相对快速的协同调节活动提供了一个强大的框架,具有推动进化的能力。哺乳动物全能性已经成为发育的一个关键阶段,在过去几年中,转座子介导的基因表达调控已成为研究的焦点。在此期间,必须完成大规模的(表观遗传)重编程,以激活宿主基因组。在小鼠和人类中,一种特殊的元素——带有亮氨酸 tRNA 引物的鼠内源性逆转录病毒(MERVL)(及其对应的人类 ERVL(HERVL))似乎已经在这个过程中获得了作为关键驱动力的角色。在这里,我将讨论和解释目前关于转座子,特别是长散在核元件(LINE-1s)和内源性逆转录病毒(ERVs)在全能性调控中的作用的知识及其影响。本文是“转座子与基因调控的交叉点”讨论会议议题的一部分。