Suppr超能文献

转座子与全能性。

On transposons and totipotency.

机构信息

Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany.

Faculty of Biology, Ludwig-Maximilians Universität, 82152 München, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Mar 30;375(1795):20190339. doi: 10.1098/rstb.2019.0339. Epub 2020 Feb 10.

Abstract

Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.

摘要

在过去的 20 年左右,我们对先前被认为是“自私的”或“垃圾”的 DNA 的作用的认识发生了巨大的变化。哺乳动物基因组中非编码部分的很大一部分具有重复性质,可分为卫星或转座子。虽然重复元件可以从其扩增的角度被称为自私的,但这些事件肯定已经被宿主所利用,这表明在这种自然选择的主体中,宿主可能具有利他的功能。事实上,已经有大量转座子调节宿主基因组功能输出的例子被记录下来。转座子为大规模相对快速的协同调节活动提供了一个强大的框架,具有推动进化的能力。哺乳动物全能性已经成为发育的一个关键阶段,在过去几年中,转座子介导的基因表达调控已成为研究的焦点。在此期间,必须完成大规模的(表观遗传)重编程,以激活宿主基因组。在小鼠和人类中,一种特殊的元素——带有亮氨酸 tRNA 引物的鼠内源性逆转录病毒(MERVL)(及其对应的人类 ERVL(HERVL))似乎已经在这个过程中获得了作为关键驱动力的角色。在这里,我将讨论和解释目前关于转座子,特别是长散在核元件(LINE-1s)和内源性逆转录病毒(ERVs)在全能性调控中的作用的知识及其影响。本文是“转座子与基因调控的交叉点”讨论会议议题的一部分。

相似文献

1
On transposons and totipotency.转座子与全能性。
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 30;375(1795):20190339. doi: 10.1098/rstb.2019.0339. Epub 2020 Feb 10.
2
Crossroads between transposons and gene regulation.转座子与基因调控的交叉点。
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 30;375(1795):20190330. doi: 10.1098/rstb.2019.0330. Epub 2020 Feb 10.
4
Nimble and Ready to Mingle: Transposon Outbursts of Early Development.灵巧而活跃:早期发育中的转座子爆发。
Trends Genet. 2018 Oct;34(10):806-820. doi: 10.1016/j.tig.2018.06.006. Epub 2018 Jul 26.
5
Transposable elements as a potent source of diverse -regulatory sequences in mammalian genomes.转座元件是哺乳动物基因组中多种调控序列的强大来源。
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 30;375(1795):20190347. doi: 10.1098/rstb.2019.0347. Epub 2020 Feb 10.
10
Massive contribution of transposable elements to mammalian regulatory sequences.转座元件对哺乳动物调控序列的巨大贡献。
Semin Cell Dev Biol. 2016 Sep;57:51-56. doi: 10.1016/j.semcdb.2016.05.004. Epub 2016 May 10.

引用本文的文献

本文引用的文献

1
LINE-1 Evasion of Epigenetic Repression in Humans.LINE-1 逃避人类的表观遗传抑制。
Mol Cell. 2019 Aug 8;75(3):590-604.e12. doi: 10.1016/j.molcel.2019.05.024. Epub 2019 Jun 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验