Department of Neurobiology, Stanford University School of Medicine, Stanford CA 94305, USA.
Department of Applied Physics, Stanford University, Stanford CA 94305, USA.
Cell Rep. 2020 Feb 18;30(7):2349-2359.e7. doi: 10.1016/j.celrep.2020.01.057.
Medial entorhinal cortex contains neural substrates for representing space. These substrates include grid cells that fire in repeating locations and increase in scale progressively along the dorsal-to-ventral entorhinal axis, with the physical distance between grid firing nodes increasing from tens of centimeters to several meters in rodents. Whether the temporal scale of grid cell spiking dynamics shows a similar dorsal-to-ventral organization remains unknown. Here, we report the presence of a dorsal-to-ventral gradient in the temporal spiking dynamics of grid cells in behaving mice. This gradient in bursting supports the emergence of a dorsal grid cell population with a high signal-to-noise ratio. In vitro recordings combined with a computational model point to a role for gradients in non-inactivating sodium conductances in supporting the bursting gradient in vivo. Taken together, these results reveal a complementary organization in the temporal and intrinsic properties of entorhinal cells.
内侧缰状回皮层包含用于表示空间的神经基质。这些基质包括在重复位置发射的网格细胞,并沿着背腹侧缰状回轴逐渐增加规模,网格发射节点之间的物理距离在啮齿动物中从几十厘米增加到几米。网格细胞放电动力学的时间尺度是否表现出类似的背腹侧组织仍然未知。在这里,我们报告了在行为小鼠的网格细胞的时间放电动力学中存在背腹侧梯度。这种爆发的梯度支持具有高信噪比的背侧网格细胞群体的出现。体内记录与计算模型相结合表明,非失活钠电导梯度在支持体内爆发梯度方面起着作用。总之,这些结果揭示了缰状回细胞在时间和内在特性上的互补组织。