Suppr超能文献

在导航与情境推理的循环神经网络模型中的重新映射

Remapping in a recurrent neural network model of navigation and context inference.

作者信息

Low Isabel I C, Giocomo Lisa M, Williams Alex H

机构信息

Zuckerman Mind Brain Behavior Institute, Columbia University.

Department of Neurobiology, Stanford University.

出版信息

bioRxiv. 2023 May 4:2023.01.25.525596. doi: 10.1101/2023.01.25.525596.

Abstract

Neurons in navigational brain regions provide information about position, orientation, and speed relative to environmental landmarks. These cells also change their firing patterns ("remap") in response to changing contextual factors such as environmental cues, task conditions, and behavioral state, which influence neural activity throughout the brain. How can navigational circuits preserve their local computations while responding to global context changes? To investigate this question, we trained recurrent neural network models to track position in simple environments while at the same time reporting transiently-cued context changes. We show that these combined task constraints (navigation and context inference) produce activity patterns that are qualitatively similar to population-wide remapping in the entorhinal cortex, a navigational brain region. Furthermore, the models identify a solution that generalizes to more complex navigation and inference tasks. We thus provide a simple, general, and experimentally-grounded model of remapping as one neural circuit performing both navigation and context inference.

摘要

导航脑区中的神经元提供有关相对于环境地标物的位置、方向和速度的信息。这些细胞还会根据不断变化的情境因素(如环境线索、任务条件和行为状态)改变其放电模式(“重新映射”),这些因素会影响整个大脑的神经活动。导航回路如何在响应全局情境变化的同时保持其局部计算能力?为了研究这个问题,我们训练了循环神经网络模型,以在简单环境中跟踪位置,同时报告瞬态提示的情境变化。我们表明,这些组合的任务约束(导航和情境推理)产生的活动模式在质量上类似于内嗅皮层(一个导航脑区)中全群体的重新映射。此外,这些模型识别出一种可推广到更复杂导航和推理任务的解决方案。因此,我们提供了一个简单、通用且基于实验的重新映射模型,作为一个执行导航和情境推理的神经回路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192d/10165699/9495d19d97a1/nihpp-2023.01.25.525596v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验