Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
ORISE Participant at the U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
Nat Commun. 2020 Feb 19;11(1):957. doi: 10.1038/s41467-020-14783-2.
Exposure to fine particulate matter (PM) from fuel combustion significantly contributes to global and US mortality. Traditional control strategies typically reduce emissions for specific air pollutants and sectors to maintain pollutant concentrations below standards. Here we directly set national PM mortality cost reduction targets within a global human-earth system model with US state-level energy systems, in scenarios to 2050, to identify endogenously the control actions, sectors, and locations that most cost-effectively reduce PM mortality. We show that substantial health benefits can be cost-effectively achieved by electrifying sources with high primary PM emission intensities, including industrial coal, building biomass, and industrial liquids. More stringent PM reduction targets expedite the phaseout of high emission intensity sources, leading to larger declines in major pollutant emissions, but very limited co-benefits in reducing CO emissions. Control strategies limiting health damages achieve the greatest emission reductions in the East North Central and Middle Atlantic states.
暴露于燃料燃烧产生的细颗粒物(PM)对全球和美国的死亡率有重大影响。传统的控制策略通常针对特定的空气污染物和部门减少排放,以将污染物浓度保持在标准以下。在这里,我们在一个具有美国州级能源系统的全球人类-地球系统模型中直接设定了国家 PM 死亡率降低目标,以在 2050 年的情景中确定最具成本效益的控制措施、部门和地点,从而降低 PM 死亡率。我们表明,通过对具有高一次 PM 排放强度的源进行电气化,包括工业煤炭、建筑生物质和工业液体,可以实现可观的健康效益。更严格的 PM 减排目标加速了高排放强度源的淘汰,导致主要污染物排放的大幅下降,但在减少 CO 排放方面的协同效益非常有限。限制健康损害的控制策略在东北中部和大西洋中部各州实现了最大的减排。