Suppr超能文献

将 Cas9 与人工抑制结构域偶联可增强 CRISPR-Cas9 的靶标特异性。

Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity.

机构信息

Synthetic Biology Group, Institute for Pharmacy and Molecular Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany.

Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.

出版信息

Sci Adv. 2020 Feb 5;6(6):eaay0187. doi: 10.1126/sciadv.aay0187. eCollection 2020 Feb.

Abstract

The limited target specificity of CRISPR-Cas nucleases poses a challenge with respect to their application in research and therapy. Here, we present a simple and original strategy to enhance the specificity of CRISPR-Cas9 genome editing by coupling Cas9 to artificial inhibitory domains. Applying a combination of mathematical modeling and experiments, we first determined how CRISPR-Cas9 activity profiles relate to Cas9 specificity. We then used artificially weakened anti-CRISPR (Acr) proteins either coexpressed with or directly fused to Cas9 to fine-tune its activity toward selected levels, thereby achieving an effective kinetic insulation of ON- and OFF-target editing events. We demonstrate highly specific genome editing in mammalian cells using diverse single-guide RNAs prone to potent OFF-targeting. Last, we show that our strategy is compatible with different modes of delivery, including transient transfection and adeno-associated viral vectors. Together, we provide a highly versatile approach to reduce CRISPR-Cas OFF-target effects via kinetic insulation.

摘要

CRISPR-Cas 核酸酶的有限靶向特异性给其在研究和治疗中的应用带来了挑战。在这里,我们提出了一种简单而新颖的策略,通过将 Cas9 与人工抑制结构域偶联来提高 CRISPR-Cas9 基因组编辑的特异性。通过结合数学建模和实验,我们首先确定了 CRISPR-Cas9 的活性谱与 Cas9 特异性之间的关系。然后,我们使用人工弱化的抗 CRISPR(Acr)蛋白与 Cas9 共表达或直接融合,以精细调节其对选定水平的活性,从而有效地对 ON-和 OFF-靶编辑事件进行动力学隔离。我们使用各种易于产生强 OFF-靶作用的单指导 RNA 在哺乳动物细胞中进行了高度特异性的基因组编辑。最后,我们表明我们的策略与不同的传递模式兼容,包括瞬时转染和腺相关病毒载体。总之,我们提供了一种高度通用的方法,通过动力学隔离来降低 CRISPR-Cas 的 OFF-靶效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc04/7002122/0f9709750d16/aay0187-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验