Suppr超能文献

基于微尺寸铌钨氧化物中互连隧道结构实现超高倍率和高安全性锂存储

Achieving Ultrahigh-Rate and High-Safety Li Storage Based on Interconnected Tunnel Structure in Micro-Size Niobium Tungsten Oxides.

作者信息

Yang Yang, Zhu He, Xiao Jinfei, Geng Hongbo, Zhang Yufei, Zhao Jinbao, Li Gen, Wang Xun-Li, Li Cheng Chao, Liu Qi

机构信息

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.

Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China.

出版信息

Adv Mater. 2020 Mar;32(12):e1905295. doi: 10.1002/adma.201905295. Epub 2020 Feb 19.

Abstract

Developing advanced high-rate electrode materials has been a crucial aspect for next-generation lithium ion batteries (LIBs). A conventional nanoarchitecturing strategy is suggested to improve the rate performance of materials but inevitably brings about compromise in volumetric energy density, cost, safety, and so on. Here, micro-size Nb W O is synthesized as a durable high-rate anode material based on a facile and scalable solution combustion method. Aberration-corrected scanning transmission electron microscopy reveals the existence of open and interconnected tunnels in the highly crystalline Nb W O , which ensures facile Li diffusion even within micro-size particles. In situ high-energy synchrotron XRD and XANES combined with Raman spectroscopy and computational simulations clearly reveal a single-phase solid-solution reaction with reversible cationic redox process occurring in the NWO framework due to the low-barrier Li intercalation. Therefore, the micro-size Nb W O exhibits durable and ultrahigh rate capability, i.e., ≈130 mAh g at 10 C, after 4000 cycles. Most importantly, the micro-size Nb W O anode proves its highest practical applicability by the fabrication of a full cell incorporating with a high-safety LiFePO cathode. Such a battery shows a long calendar life of over 1000 cycles and an enhanced thermal stability, which is superior than the current commercial anodes such as Li Ti O .

摘要

开发先进的高倍率电极材料一直是下一代锂离子电池(LIBs)的关键方面。一种传统的纳米结构策略被认为可以提高材料的倍率性能,但不可避免地会在体积能量密度、成本、安全性等方面做出妥协。在此,基于简便且可扩展的溶液燃烧法合成了微米尺寸的NbWO作为一种耐用的高倍率负极材料。校正像差的扫描透射电子显微镜揭示了在高度结晶的NbWO中存在开放且相互连接的隧道,这确保了即使在微米尺寸的颗粒内Li也能轻松扩散。原位高能同步加速器XRD和XANES结合拉曼光谱和计算模拟清楚地揭示了由于低势垒Li嵌入,在NWO框架中发生了具有可逆阳离子氧化还原过程的单相固溶体反应。因此,微米尺寸的NbWO表现出持久且超高的倍率性能,即在10C下循环4000次后,比容量约为130mAh g。最重要的是,通过制造与高安全性LiFePO正极结合的全电池,微米尺寸的NbWO负极证明了其最高的实际适用性。这样的电池显示出超过1000次循环的长循环寿命和增强的热稳定性,优于当前的商业负极如LiTiO。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验