Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK.
Cardiovasc Res. 2021 Feb 22;117(3):780-791. doi: 10.1093/cvr/cvaa043.
The cardiac ryanodine receptor (RyR2), which mediates intracellular Ca2+ release to trigger cardiomyocyte contraction, participates in development of acquired and inherited arrhythmogenic cardiac disease. This study was undertaken to characterize the network of inter- and intra-subunit interactions regulating the activity of the RyR2 homotetramer.
We use mutational investigations combined with biochemical assays to identify the peptide sequence bridging the β8 with β9 strand as the primary determinant mediating RyR2 N-terminus self-association. The negatively charged side chains of two aspartate residues (D179 and D180) within the β8-β9 loop are crucial for the N-terminal inter-subunit interaction. We also show that the RyR2 N-terminus domain interacts with the C-terminal channel pore region in a Ca2+-independent manner. The β8-β9 loop is required for efficient RyR2 subunit oligomerization but it is dispensable for N-terminus interaction with C-terminus. Deletion of the β8-β9 sequence produces unstable tetrameric channels with subdued intracellular Ca2+ mobilization implicating a role for this domain in channel opening. The arrhythmia-linked R176Q mutation within the β8-β9 loop decreases N-terminus tetramerization but does not affect RyR2 subunit tetramerization or the N-terminus interaction with C-terminus. RyR2R176Q is a characteristic hypersensitive channel displaying enhanced intracellular Ca2+ mobilization suggesting an additional role for the β8-β9 domain in channel closing.
These results suggest that efficient N-terminus inter-subunit communication mediated by the β8-β9 loop may constitute a primary regulatory mechanism for both RyR2 channel activation and suppression.
心脏兰尼碱受体(RyR2)介导细胞内 Ca2+ 释放以触发心肌细胞收缩,参与获得性和遗传性心律失常性心脏病的发生。本研究旨在描述调节 RyR2 同源四聚体活性的亚基间和亚基内相互作用网络。
我们使用突变研究结合生化测定来确定连接β8 与β9 链的肽序列是介导 RyR2 N 端自缔合的主要决定因素。β8-β9 环内两个天冬氨酸残基(D179 和 D180)的负电荷侧链对于 N 端亚基间相互作用至关重要。我们还表明,RyR2 N 端结构域以 Ca2+ 独立的方式与 C 端通道孔区域相互作用。β8-β9 环对于 RyR2 亚基寡聚化的效率是必需的,但对于 N 端与 C 端的相互作用是可有可无的。β8-β9 序列的缺失会产生不稳定的四聚体通道,细胞内 Ca2+ 动员减弱,表明该结构域在通道开放中起作用。β8-β9 环内的心律失常相关 R176Q 突变会降低 N 端四聚化,但不会影响 RyR2 亚基四聚化或 N 端与 C 端的相互作用。RyR2R176Q 是一种特征性的超敏通道,显示增强的细胞内 Ca2+ 动员,表明β8-β9 结构域在通道关闭中具有额外的作用。
这些结果表明,β8-β9 环介导的有效 N 端亚基间通讯可能是 RyR2 通道激活和抑制的主要调节机制。