Suppr超能文献

冷冻电镜揭示的三磷酸肌醇受体(InsP3R)通道门控机制

Gating machinery of InsP3R channels revealed by electron cryomicroscopy.

作者信息

Fan Guizhen, Baker Matthew L, Wang Zhao, Baker Mariah R, Sinyagovskiy Pavel A, Chiu Wah, Ludtke Steven J, Serysheva Irina I

机构信息

Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA.

National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

出版信息

Nature. 2015 Nov 19;527(7578):336-41. doi: 10.1038/nature15249. Epub 2015 Oct 12.

Abstract

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.

摘要

肌醇-1,4,5-三磷酸受体(InsP3Rs)是普遍存在的离子通道,负责胞质Ca(2+)信号传导,对于从收缩到分泌、从增殖到细胞死亡等一系列广泛的细胞过程至关重要。尽管对InsP3Rs进行了数十年的研究,但仍缺乏对其结构-功能关系的机制理解。在此,据我们所知,我们展示了处于无配体状态的四聚体哺乳动物1型InsP3R通道的首个近原子(4.7 Å)分辨率的冷冻电镜结构。在此分辨率下,我们能够明确追踪约85%的蛋白质主链,从而使我们能够识别参与这个1.3兆道尔顿通道门控和调节的结构元件。尽管中央Ca(2+)传导途径与其他离子通道相似,包括密切相关的兰尼碱受体,但胞质羧基末端以独特的方式排列成左手α螺旋束,直接与相邻亚基的氨基末端结构域相互作用。这种结构表明了一种通过细胞内信号对通道门控进行变构调节的分子机制。

相似文献

1
Gating machinery of InsP3R channels revealed by electron cryomicroscopy.
Nature. 2015 Nov 19;527(7578):336-41. doi: 10.1038/nature15249. Epub 2015 Oct 12.
2
Revisiting channel allostery: a coherent mechanism in IP₃ and ryanodine receptors.
Sci Signal. 2012 May 22;5(225):pe24. doi: 10.1126/scisignal.2003148.
3
Cryo-EM reveals ligand induced allostery underlying InsPR channel gating.
Cell Res. 2018 Dec;28(12):1158-1170. doi: 10.1038/s41422-018-0108-5. Epub 2018 Nov 23.
4
Structural and functional conservation of key domains in InsP3 and ryanodine receptors.
Nature. 2012 Jan 29;483(7387):108-12. doi: 10.1038/nature10751.
5
Architecture and conformational switch mechanism of the ryanodine receptor.
Nature. 2015 Jan 1;517(7532):39-43. doi: 10.1038/nature13916. Epub 2014 Dec 1.
6
Structure of a mammalian ryanodine receptor.
Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.
7
CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8507-12. doi: 10.1073/pnas.1220847110. Epub 2013 May 6.
8
The structural biology of ryanodine receptors.
Sci China Life Sci. 2011 Aug;54(8):712-24. doi: 10.1007/s11427-011-4198-2. Epub 2011 Jul 24.
9
Ryanodine receptor calcium release channels: lessons from structure-function studies.
FEBS J. 2013 Nov;280(21):5456-70. doi: 10.1111/febs.12194. Epub 2013 Mar 18.
10
Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.
Nature. 2015 Jan 1;517(7532):50-55. doi: 10.1038/nature14063. Epub 2014 Dec 15.

引用本文的文献

1
From IP3RPEP6 Inhibition of IP receptor channels to insights: do channel subunits collaborate or cooperate?
Cell Mol Life Sci. 2025 Jul 19;82(1):285. doi: 10.1007/s00018-025-05813-7.
2
IRBITs, signaling molecules of great functional diversity.
Pflugers Arch. 2025 May 30. doi: 10.1007/s00424-025-03095-3.
3
Single-particle cryogenic electron microscopy structure determination for membrane proteins.
Curr Opin Struct Biol. 2025 Jun;92:103047. doi: 10.1016/j.sbi.2025.103047. Epub 2025 Apr 13.
4
The TRPV3 channel is a mediator of zinc influx and homeostasis in murine oocytes.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2420194122. doi: 10.1073/pnas.2420194122. Epub 2025 Apr 1.
5
Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency.
J Exp Med. 2025 Jan 6;222(1). doi: 10.1084/jem.20220979. Epub 2024 Nov 19.
6
The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca transport in the pathogenesis of diseases.
Acta Pharmacol Sin. 2025 Feb;46(2):271-291. doi: 10.1038/s41401-024-01359-9. Epub 2024 Aug 8.
7
Dissecting the neuroprotective interaction between the BH4 domain of BCL-w and the IP3 receptor.
Cell Chem Biol. 2024 Oct 17;31(10):1815-1826.e5. doi: 10.1016/j.chembiol.2024.06.016. Epub 2024 Jul 26.
8
A ratiometric ER calcium sensor for quantitative comparisons across cell types and subcellular regions.
bioRxiv. 2024 Feb 16:2024.02.15.580492. doi: 10.1101/2024.02.15.580492.
9
Zn is essential for Ca oscillations in mouse eggs.
Elife. 2023 Dec 15;12:RP88082. doi: 10.7554/eLife.88082.

本文引用的文献

1
Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.
Nature. 2015 Jan 1;517(7532):50-55. doi: 10.1038/nature14063. Epub 2014 Dec 15.
2
Structure of a mammalian ryanodine receptor.
Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.
3
Architecture and conformational switch mechanism of the ryanodine receptor.
Nature. 2015 Jan 1;517(7532):39-43. doi: 10.1038/nature13916. Epub 2014 Dec 1.
4
Selecting ions by size in a calcium channel: the ryanodine receptor case study.
Biophys J. 2014 Nov 18;107(10):2263-73. doi: 10.1016/j.bpj.2014.09.031.
5
Toward a high-resolution structure of IP₃R channel.
Cell Calcium. 2014 Sep;56(3):125-32. doi: 10.1016/j.ceca.2014.08.002. Epub 2014 Aug 10.
6
Quantifying the local resolution of cryo-EM density maps.
Nat Methods. 2014 Jan;11(1):63-5. doi: 10.1038/nmeth.2727. Epub 2013 Nov 10.
7
PDBsum additions.
Nucleic Acids Res. 2014 Jan;42(Database issue):D292-6. doi: 10.1093/nar/gkt940. Epub 2013 Oct 22.
8
Validation of cryo-EM structure of IP₃R1 channel.
Structure. 2013 Jun 4;21(6):900-9. doi: 10.1016/j.str.2013.04.016. Epub 2013 May 23.
9
Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM.
Nat Methods. 2013 Jun;10(6):584-90. doi: 10.1038/nmeth.2472. Epub 2013 May 5.
10
Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors.
J Biol Chem. 2012 Dec 21;287(52):43674-84. doi: 10.1074/jbc.M112.415786. Epub 2012 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验