Suppr超能文献

非线性偶极子反演(NDI)可实现稳健的定量磁化率映射(QSM)。

Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM).

机构信息

Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.

Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

出版信息

NMR Biomed. 2020 Dec;33(12):e4271. doi: 10.1002/nbm.4271. Epub 2020 Feb 20.

Abstract

High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.

摘要

我们开发了一种具有预定正则化的高质量定量磁化率映射 (QSM) 与非线性偶极子反演 (NDI),其图像质量可与最先进的重建技术相匹配,同时避免了这些技术经常出现的过度平滑。NDI 足够灵活,可以从任意数量的头部方向进行重建,即使使用 1 个方向的数据也能优于 COSMOS。这是通过使用幅度作为有效先验的非线性正向模型实现的,为此我们推导出了一个简单的梯度下降更新规则。我们协同地将这个物理模型与一个变分网络 (VN) 结合起来,以在 VaNDI 算法中利用深度学习的力量。该技术采用 NDI 中的简单梯度下降规则,并在训练过程中学习网络参数,因此不需要额外的参数调整。此外,我们在 7 T 下使用高加速的 Wave-CAIPI 采集,在 0.5 毫米各向同性分辨率下进行评估,并展示了从仅 2 个方向的数据中获得的高质量 QSM。

相似文献

3
Quantitative susceptibility mapping using deep neural network: QSMnet.基于深度神经网络的定量磁化率映射:QSMnet。
Neuroimage. 2018 Oct 1;179:199-206. doi: 10.1016/j.neuroimage.2018.06.030. Epub 2018 Jun 15.
4
Learned Proximal Networks for Quantitative Susceptibility Mapping.用于定量磁化率成像的学习近端网络
Med Image Comput Comput Assist Interv. 2020 Oct;12262:125-135. doi: 10.1007/978-3-030-59713-9_13. Epub 2020 Sep 29.

引用本文的文献

9
Incomplete spectrum QSM using support information.使用支持信息的不完全频谱定量 susceptibility 映射
Front Neurosci. 2023 Apr 17;17:1130524. doi: 10.3389/fnins.2023.1130524. eCollection 2023.
10
Toward a realistic in silico abdominal phantom for QSM.为 QSM 构建现实的腹部虚拟人。
Magn Reson Med. 2023 Jun;89(6):2402-2418. doi: 10.1002/mrm.29597. Epub 2023 Jan 25.

本文引用的文献

2
Quantitative susceptibility mapping using deep neural network: QSMnet.基于深度神经网络的定量磁化率映射:QSMnet。
Neuroimage. 2018 Oct 1;179:199-206. doi: 10.1016/j.neuroimage.2018.06.030. Epub 2018 Jun 15.
6
Quantitative Susceptibility Mapping in Parkinson's Disease.帕金森病中的定量磁化率成像
PLoS One. 2016 Sep 6;11(9):e0162460. doi: 10.1371/journal.pone.0162460. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验