Suppr超能文献

差异等位基因特异性表达揭示受顺式非编码突变失调的乳腺癌基因

Differential Allele-Specific Expression Uncovers Breast Cancer Genes Dysregulated by Cis Noncoding Mutations.

作者信息

Przytycki Pawel F, Singh Mona

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Cell Syst. 2020 Feb 26;10(2):193-203.e4. doi: 10.1016/j.cels.2020.01.002. Epub 2020 Feb 19.

Abstract

Identifying cancer-relevant mutations in noncoding regions is challenging due to the large numbers of such mutations, their low levels of recurrence, and difficulties in interpreting their functional impact. To uncover genes that are dysregulated due to somatic mutations in cis, we build upon the concept of differential allele-specific expression (ASE) and introduce methods to identify genes within an individual's cancer whose ASE differs from what is found in matched normal tissue. When applied to breast cancer tumor samples, our methods detect the known allele-specific effects of copy number variation and nonsense-mediated decay. Further, genes that are found to recurrently exhibit differential ASE across samples are cancer relevant. Genes with cis mutations are enriched for differential ASE, and we find 147 potentially functional noncoding mutations cis to genes that exhibit significant differential ASE. We conclude that differential ASE is a promising means for discovering gene dysregulation due to cis noncoding mutations.

摘要

由于非编码区癌症相关突变数量众多、复发水平低且难以解释其功能影响,识别这些突变具有挑战性。为了揭示因顺式体细胞突变而失调的基因,我们基于差异等位基因特异性表达(ASE)的概念,并引入方法来识别个体癌症中ASE与匹配正常组织中不同的基因。应用于乳腺癌肿瘤样本时,我们的方法检测到了已知的拷贝数变异和无义介导衰变的等位基因特异性效应。此外,在多个样本中反复出现差异ASE的基因与癌症相关。具有顺式突变的基因富含差异ASE,并且我们在表现出显著差异ASE的基因顺式区域发现了147个潜在功能性非编码突变。我们得出结论,差异ASE是发现因顺式非编码突变导致基因失调的一种有前景的方法。

相似文献

引用本文的文献

2
Current and future directions in network biology.网络生物学的当前与未来发展方向。
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验