Suppr超能文献

使用最有效的实验室检测结果预测老年住院患者急性肾损伤的发生。

Early prediction of acquiring acute kidney injury for older inpatients using most effective laboratory test results.

机构信息

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.

Division of Nephrology, Asia University Hospital, Taichung, Taiwan.

出版信息

BMC Med Inform Decis Mak. 2020 Feb 20;20(1):36. doi: 10.1186/s12911-020-1050-2.

Abstract

BACKGROUND

Acute Kidney Injury (AKI) is common among inpatients. Severe AKI increases all-cause mortality especially in critically ill patients. Older patients are more at risk of AKI because of the declined renal function, increased comorbidities, aggressive medical treatments, and nephrotoxic drugs. Early prediction of AKI for older inpatients is therefore crucial.

METHODS

We use 80 different laboratory tests from the electronic health records and two types of representations for each laboratory test, that is, we consider 160 (laboratory test, type) pairs one by one to do the prediction. By proposing new similarity measures and employing the classification technique of the K nearest neighbors, we are able to identify the most effective (laboratory test, type) pairs for the prediction. Furthermore, in order to know how early and accurately can AKI be predicted to make our method clinically useful, we evaluate the prediction performance of up to 5 days prior to the AKI event.

RESULTS

We compare our method with two existing works and it shows our method outperforms the others. In addition, we implemented an existing method using our dataset, which also shows our method has a better performance. The most effective (laboratory test, type) pairs found for different prediction times are slightly different. However, Blood Urea Nitrogen (BUN) is found the most effective (laboratory test, type) pair for most prediction times.

CONCLUSION

Our study is first to consider the last value and the trend of the sequence for each laboratory test. In addition, we define the exclusion criteria to identify the inpatients who develop AKI during hospitalization and we set the length of the data collection window to ensure the laboratory data we collect is close to the AKI time. Furthermore, we individually select the most effective (laboratory test, type) pairs to do the prediction for different days of early prediction. In the future, we will extend this approach and develop a system for early prediction of major diseases to help better disease management for inpatients.

摘要

背景

急性肾损伤(AKI)在住院患者中很常见。严重 AKI 会增加全因死亡率,尤其是在重症患者中。由于肾功能下降、合并症增加、积极的医疗治疗和肾毒性药物,老年患者发生 AKI 的风险更高。因此,对老年住院患者进行 AKI 的早期预测至关重要。

方法

我们使用电子病历中的 80 种不同的实验室测试和每种实验室测试的两种表示形式,即我们逐一考虑 160 种(实验室测试,类型)对来进行预测。通过提出新的相似性度量标准并采用 K 最近邻分类技术,我们能够确定最有效的(实验室测试,类型)对进行预测。此外,为了了解 AKI 可以提前多久并准确预测,以使我们的方法具有临床意义,我们评估了多达 AKI 事件发生前 5 天的预测性能。

结果

我们将我们的方法与两项现有工作进行了比较,结果表明我们的方法优于其他方法。此外,我们使用我们的数据集实现了一种现有的方法,该方法也表明我们的方法具有更好的性能。不同预测时间找到的最有效(实验室测试,类型)对略有不同。然而,血尿素氮(BUN)被发现是大多数预测时间最有效的(实验室测试,类型)对。

结论

我们的研究首先考虑了每个实验室测试的最后一个值和序列趋势。此外,我们定义了排除标准来识别在住院期间发生 AKI 的住院患者,并设置了数据收集窗口的长度,以确保我们收集的实验室数据接近 AKI 时间。此外,我们单独为不同的早期预测天数选择最有效的(实验室测试,类型)对进行预测。在未来,我们将扩展此方法并开发一种用于主要疾病早期预测的系统,以帮助更好地管理住院患者的疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c1/7032003/0f146504921d/12911_2020_1050_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验