Suppr超能文献

用于在不同研究人群的乳腺癌中转录组全基因组关联研究的框架。

A framework for transcriptome-wide association studies in breast cancer in diverse study populations.

机构信息

Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA.

出版信息

Genome Biol. 2020 Feb 20;21(1):42. doi: 10.1186/s13059-020-1942-6.

Abstract

BACKGROUND

The relationship between germline genetic variation and breast cancer survival is largely unknown, especially in understudied minority populations who often have poorer survival. Genome-wide association studies (GWAS) have interrogated breast cancer survival but often are underpowered due to subtype heterogeneity and clinical covariates and detect loci in non-coding regions that are difficult to interpret. Transcriptome-wide association studies (TWAS) show increased power in detecting functionally relevant loci by leveraging expression quantitative trait loci (eQTLs) from external reference panels in relevant tissues. However, ancestry- or race-specific reference panels may be needed to draw correct inference in ancestrally diverse cohorts. Such panels for breast cancer are lacking.

RESULTS

We provide a framework for TWAS for breast cancer in diverse populations, using data from the Carolina Breast Cancer Study (CBCS), a population-based cohort that oversampled black women. We perform eQTL analysis for 406 breast cancer-related genes to train race-stratified predictive models of tumor expression from germline genotypes. Using these models, we impute expression in independent data from CBCS and TCGA, accounting for sampling variability in assessing performance. These models are not applicable across race, and their predictive performance varies across tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of 0.10 and stratifying for race, we identify associations in black women near AURKA, CAPN13, PIK3CA, and SERPINB5 via TWAS that are underpowered in GWAS.

CONCLUSIONS

We show that carefully implemented and thoroughly validated TWAS is an efficient approach for understanding the genetics underpinning breast cancer outcomes in diverse populations.

摘要

背景

胚系遗传变异与乳腺癌生存之间的关系在很大程度上尚不清楚,尤其是在研究较少的少数人群中,这些人群的生存往往较差。全基因组关联研究(GWAS)已经研究了乳腺癌的生存情况,但由于亚群异质性和临床协变量以及检测到难以解释的非编码区域中的基因座,通常功效不足。转录组全基因组关联研究(TWAS)通过利用相关组织中外源参考面板中的表达数量性状基因座(eQTL),在检测功能相关基因座方面具有更高的功效。然而,在遗传背景多样化的队列中,可能需要使用特定于祖先或种族的参考面板来得出正确的推断。缺乏此类针对乳腺癌的面板。

结果

我们提供了一个在不同人群中进行 TWAS 的框架,该框架使用了来自基于人群的卡罗来纳乳腺癌研究(CBCS)的数据,该研究对黑人女性进行了过度抽样。我们对 406 个与乳腺癌相关的基因进行了 eQTL 分析,以根据胚系基因型训练肿瘤表达的种族分层预测模型。使用这些模型,我们在来自 CBCS 和 TCGA 的独立数据中进行表达推断,考虑了评估性能时的抽样变异性。这些模型不适用于所有种族,并且它们的预测性能因肿瘤亚型而异。在 CBCS(N=3828)中,在错误发现率调整的显著性为 0.10 并按种族分层的情况下,我们通过 TWAS 确定了黑人女性中 AURKA、CAPN13、PIK3CA 和 SERPINB5 附近的关联,这些关联在 GWAS 中功效不足。

结论

我们表明,精心实施和彻底验证的 TWAS 是理解不同人群中乳腺癌结局遗传基础的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/283d/7033948/aea126586479/13059_2020_1942_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验