Suppr超能文献

多任务分组双向长短期记忆网络在心电图分类中的应用

A Multi-Task Group Bi-LSTM Networks Application on Electrocardiogram Classification.

作者信息

Lv Qiu-Jie, Chen Hsin-Yi, Zhong Wei-Bin, Wang Ying-Ying, Song Jing-Yan, Guo Sai-Di, Qi Lian-Xin, Chen Calvin Yu-Chian

机构信息

1Artificial Intelligence Medical Center, School of Intelligent Systems EngineeringSun Yat-sen UniversityShenzhen510275China.

2School of Software and Applied TechnologyZhengzhou UniversityZhengzhou450002China.

出版信息

IEEE J Transl Eng Health Med. 2019 Nov 12;8:1900111. doi: 10.1109/JTEHM.2019.2952610. eCollection 2020.

Abstract

BACKGROUND

Cardiovascular diseases (CVD) are the leading cause of death globally. Electrocardiogram (ECG) analysis can provide thoroughly assessment for different CVDs efficiently. We propose a multi-task group bidirectional long short-term memory (MTGBi-LSTM) framework to intelligent recognize multiple CVDs based on multi-lead ECG signals.

METHODS

This model employs a Group Bi-LSTM (GBi-LSTM) and Residual Group Convolutional Neural Network (Res-GCNN) to learn the dual feature representation of ECG space and time series. GBi-LSTM is divided into Global Bi-LSTM and Intra-Group Bi-LSTM, which can learn the features of each ECG lead and the relationship between leads. Then, through attention mechanism, the different lead information of ECG is integrated to make the model to possess the powerful feature discriminability. Through multi-task learning, the model can fully mine the association information between diseases and obtain more accurate diagnostic results. In addition, we propose a dynamic weighted loss function to better quantify the loss to overcome the imbalance between classes.

RESULTS

Based on more than 170,000 clinical 12-lead ECG analysis, the MTGBi-LSTM method achieved accuracy, precision, recall and F1 of 88.86%, 90.67%, 94.19% and 92.39%, respectively. The experimental results show that the proposed MTGBi-LSTM method can reliably realize ECG analysis and provide an effective tool for computer-aided diagnosis of CVD.

摘要

背景

心血管疾病(CVD)是全球主要的死亡原因。心电图(ECG)分析可以有效地为不同的心血管疾病提供全面评估。我们提出了一种多任务组双向长短期记忆(MTGBi-LSTM)框架,以基于多导联心电图信号智能识别多种心血管疾病。

方法

该模型采用组双向长短期记忆(GBi-LSTM)和残差组卷积神经网络(Res-GCNN)来学习心电图空间和时间序列的双重特征表示。GBi-LSTM分为全局双向长短期记忆(Global Bi-LSTM)和组内双向长短期记忆(Intra-Group Bi-LSTM),可以学习每个心电图导联的特征以及导联之间的关系。然后,通过注意力机制,整合心电图的不同导联信息,使模型具有强大的特征判别能力。通过多任务学习,模型可以充分挖掘疾病之间的关联信息,获得更准确的诊断结果。此外,我们提出了一种动态加权损失函数,以更好地量化损失,克服类间不平衡。

结果

基于超过170,000例临床12导联心电图分析,MTGBi-LSTM方法的准确率、精确率、召回率和F1值分别达到88.86%、90.67%、94.19%和92.39%。实验结果表明,所提出的MTGBi-LSTM方法能够可靠地实现心电图分析,为心血管疾病的计算机辅助诊断提供了一种有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c087/7028438/895a250f22bf/chen1-2952610.jpg

相似文献

1
A Multi-Task Group Bi-LSTM Networks Application on Electrocardiogram Classification.
IEEE J Transl Eng Health Med. 2019 Nov 12;8:1900111. doi: 10.1109/JTEHM.2019.2952610. eCollection 2020.
3
An improved Bi-LSTM method based on heterogeneous features fusion and attention mechanism for ECG recognition.
Comput Biol Med. 2024 Feb;169:107903. doi: 10.1016/j.compbiomed.2023.107903. Epub 2023 Dec 28.
4
A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification.
Bioengineering (Basel). 2022 Apr 2;9(4):152. doi: 10.3390/bioengineering9040152.
5
ECG data enhancement method using generate adversarial networks based on Bi-LSTM and CBAM.
Physiol Meas. 2024 Feb 12;45(2). doi: 10.1088/1361-6579/ad2218.
6
An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
Sensors (Basel). 2023 May 21;23(10):4950. doi: 10.3390/s23104950.
8
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset.
J Healthc Eng. 2019 Oct 13;2019:6320651. doi: 10.1155/2019/6320651. eCollection 2019.
9
Deep learning for predicting respiratory rate from biosignals.
Comput Biol Med. 2022 May;144:105338. doi: 10.1016/j.compbiomed.2022.105338. Epub 2022 Mar 2.

引用本文的文献

1
MELEP: A Novel Predictive Measure of Transferability in Multi-label ECG Diagnosis.
J Healthc Inform Res. 2024 Jun 15;8(3):506-522. doi: 10.1007/s41666-024-00168-3. eCollection 2024 Sep.
2
A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition.
Sensors (Basel). 2024 Jul 14;24(14):4558. doi: 10.3390/s24144558.
5
Diagnosing the benign paroxysmal positional vertigo via 1D and deep-learning composite model.
J Neurol. 2023 Aug;270(8):3800-3809. doi: 10.1007/s00415-023-11662-w. Epub 2023 Apr 20.
6
Classification of IHC Images of NATs With ResNet-FRP-LSTM for Predicting Survival Rates of Rectal Cancer Patients.
IEEE J Transl Eng Health Med. 2022 Dec 15;11:87-95. doi: 10.1109/JTEHM.2022.3229561. eCollection 2023.

本文引用的文献

2
Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest.
Entropy (Basel). 2019 Mar 21;21(3):305. doi: 10.3390/e21030305.
3
A new approach for arrhythmia classification using deep coded features and LSTM networks.
Comput Methods Programs Biomed. 2019 Jul;176:121-133. doi: 10.1016/j.cmpb.2019.05.004. Epub 2019 May 10.
4
LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices.
IEEE J Biomed Health Inform. 2020 Feb;24(2):515-523. doi: 10.1109/JBHI.2019.2911367. Epub 2019 Apr 15.
5
6
Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases.
J Healthc Eng. 2018 May 9;2018:8954878. doi: 10.1155/2018/8954878. eCollection 2018.
7
Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
Comput Biol Med. 2018 Mar 1;94:19-26. doi: 10.1016/j.compbiomed.2017.12.023. Epub 2018 Jan 2.
8
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验