Suppr超能文献

使用定性诊断算法与LI-RADS v2018词典对非典型与典型肝癌病变进行动态肝脏成像的诊断效能:来自一家三级肝脏研究所的十年经验。

Diagnostic efficacy of dynamic liver imaging using qualitative diagnostic algorithm versus LI-RADS v2018 lexicon for atypical versus classical HCC lesions: A decade of experience from a tertiary liver institute.

作者信息

Laroia Shalini Thapar, Yadav Komal, Rastogi Archana, Kumar Guresh, Kumar Senthil, Sarin Shiv Kumar

机构信息

Department of Radiology, Institute of Liver and Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India.

Department of Pathology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India.

出版信息

Eur J Radiol Open. 2020 Feb 12;7:100219. doi: 10.1016/j.ejro.2020.100219. eCollection 2020.

Abstract

OBJECTIVE

To analyze and evaluate the diagnostic performance of conventional diagnostic (qualitative) imaging features versus LI-RADSv2018 lexicon for indeterminate and atypical Hepatocellular carcinoma (HCC) on dynamic liver imaging with reference to histopathology.

PATIENTS AND METHODS

This retrospective study (June 2009-June 2019) evaluated the performance characteristics of conventional imaging findings, versus the Liver Imaging Reporting and Data System (LIRADS) v2018, for interpretation of indeterminate and atypical HCC, in patients who underwent subsequent histopathological analysis (gold standard). A total of 100,457 dynamic hepatobiliary CT and MR examinations were performed over ten years at our institute. Using current international imaging guidelines, 3218 patients were found to have suspected liver cancer lesions on imaging. Classical enhancement pattern of typical HCC was seen in 2916 of these patients. These patients did not require further biopsy. We enrolled, the remaining (n = 302) patients, who underwent biopsy, into our study group. Two radiologists, blinded to pathology findings, reviewed and classified these lesions, in consensus, according to LI-RADS® lexicon and as per 'conventional' (Indeterminate, Atypical HCC, Classical HCC, other malignancies) imaging. The histopathology diagnosis was considered as the final diagnosis. Alpha feto protein (AFP) levels amongst various subgroups were compared. Statistical analysis was performed to calculate the efficacy of LIRADS versus qualitative imaging parameters in comparison with histopathology.

RESULTS

A total of n = 302 patients, [89 % men (n = 269), mean age 57.08 ± 12.43 years] underwent biopsy for suspected liver lesions. Qualitative imaging had 92.3 % (CI 88.53-94.91) sensitivity, 41.4 % (CI 25.51-59.26) specificity, positive predictive value (PPV) of 93.7 % (CI 90.11-96.02), negative predictive value (NPV) of 36.4 % (CI 22.19-53.38), positive likelihood ratio (PLHR) of 1.575 (CI 1.40-1.77) and negative likelihood ratio of (NLHR) 0.19 (CI 0.13-0.26). It correctly classified 87.4 % of lesions diagnosed on pathology. In comparison, LI-RADS was found to have 92 % sensitivity, 55.5 % specificity, 97 % PPV, 30.3 %, NPV, PLHR 2.068 (CI 1.62-2.64), NLHR 0.15 (CI 0.11-0.18) and 89.7 % diagnostic accuracy. A total of 38 patients (17 false negative, 21 false positive lesions) had discordant diagnoses on imaging versus histopathology. The kappa agreement between LIRADs and qualitative Imaging was found to be 0.77 ± .07 (p < 0.001). LIRADS and qualitative imaging collectively had 97 % sensitivity, 30 % specificity, 91.9 % PPV, 55.6 % NPV, PLHR of 1.39 (CI 1.27-1.51) and NLHR of 0.09 (0.048-0.19) which was better than, either reporting system, independently.

CONCLUSION

It was observed that the LI-RADS v2018 lexicon with qualitative imaging as a combination technique added extra value in interpretation of atypical HCC or indeterminate lesions on dynamic CT and MRI compared to either as 'stand- alone' reporting systems.

摘要

目的

参照组织病理学,分析和评估传统诊断(定性)成像特征与LI-RADSv2018词典对动态肝脏成像中不确定和非典型肝细胞癌(HCC)的诊断性能。

患者与方法

这项回顾性研究(2009年6月至2019年6月)评估了传统成像结果与肝脏影像报告和数据系统(LIRADS)v2018对不确定和非典型HCC的解读性能特征,这些患者均接受了后续的组织病理学分析(金标准)。在我们研究所的十年间共进行了100457次动态肝胆CT和MR检查。根据当前国际成像指南,在成像检查中发现3218例患者有疑似肝癌病变。其中2916例患者可见典型HCC的经典强化模式。这些患者无需进一步活检。我们将其余(n = 302)接受活检的患者纳入研究组。两名对病理结果不知情的放射科医生根据LI-RADS®词典并按照“传统”(不确定、非典型HCC、经典HCC、其他恶性肿瘤)成像方法,对这些病变进行了一致的复查和分类。组织病理学诊断被视为最终诊断。比较了各亚组中甲胎蛋白(AFP)水平。进行统计分析以计算LIRADS与定性成像参数相对于组织病理学的有效性。

结果

共有n = 302例患者[89%为男性(n = 269),平均年龄57.08±12.43岁]因疑似肝脏病变接受活检。定性成像的敏感性为92.3%(CI 88.53 - 94.91),特异性为41.4%(CI 25.51 - 59.26),阳性预测值(PPV)为93.7%(CI 90.11 - 96.02),阴性预测值(NPV)为36.4%(CI 22.19 - 53.38),阳性似然比(PLHR)为1.575(CI 1.40 - 1.77),阴性似然比(NLHR)为0.19(CI 0.13 - 0.26)。它正确分类了病理诊断的87.4%的病变。相比之下,LI-RADS的敏感性为92%,特异性为55.5%,PPV为97%,NPV为30.3%,PLHR为2.068(CI 1.62 - 2.64),NLHR为0.15(CI 0.11 - 0.18),诊断准确性为89.7%。共有38例患者(17例假阴性、21例假阳性病变)在成像与组织病理学诊断上存在不一致。发现LIRADs与定性成像之间的kappa一致性为0.77±.07(p < 0.001)。LIRADS和定性成像共同的敏感性为97%,特异性为30%,PPV为91.9%,NPV为55.6%,PLHR为1.39(CI 1.27 - 1.51)且NLHR为0.09(0.048 - 0.19),这比任何一种报告系统单独使用时都要好。

结论

观察到与单独作为报告系统相比,LI-RADS v2018词典结合定性成像作为一种联合技术,在动态CT和MRI上对非典型HCC或不确定病变的解读中增加了额外价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d967/7016378/81e65e977993/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验