Suppr超能文献

主题驱动的毒性:探究网络毒性与新闻主题之间的关系。

Topic-driven toxicity: Exploring the relationship between online toxicity and news topics.

机构信息

Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar.

University of Turku, Turku, Finland.

出版信息

PLoS One. 2020 Feb 21;15(2):e0228723. doi: 10.1371/journal.pone.0228723. eCollection 2020.

Abstract

Hateful commenting, also known as 'toxicity', frequently takes place within news stories in social media. Yet, the relationship between toxicity and news topics is poorly understood. To analyze how news topics relate to the toxicity of user comments, we classify topics of 63,886 online news videos of a large news channel using a neural network and topical tags used by journalists to label content. We score 320,246 user comments from those videos for toxicity and compare how the average toxicity of comments varies by topic. Findings show that topics like Racism, Israel-Palestine, and War & Conflict have more toxicity in the comments, and topics such as Science & Technology, Environment & Weather, and Arts & Culture have less toxic commenting. Qualitative analysis reveals five themes: Graphic videos, Humanistic stories, History and historical facts, Media as a manipulator, and Religion. We also observe cases where a typically more toxic topic becomes non-toxic and where a typically less toxic topic becomes "toxicified" when it involves sensitive elements, such as politics and religion. Findings suggest that news comment toxicity can be characterized as topic-driven toxicity that targets topics rather than as vindictive toxicity that targets users or groups. Practical implications suggest that humanistic framing of the news story (i.e., reporting stories through real everyday people) can reduce toxicity in the comments of an otherwise toxic topic.

摘要

仇恨评论,也被称为“毒性”,经常出现在社交媒体中的新闻故事中。然而,毒性与新闻主题之间的关系还没有得到很好的理解。为了分析新闻主题与用户评论毒性之间的关系,我们使用神经网络和记者用来标记内容的主题标签对一个大型新闻频道的 63886 个在线新闻视频的主题进行分类。我们对这些视频中的 320246 条用户评论进行毒性评分,并比较评论的平均毒性如何因主题而异。研究结果表明,像种族主义、巴以冲突和战争与冲突这样的主题,评论的毒性更大,而科学与技术、环境与天气以及艺术与文化等主题的评论毒性则较小。定性分析揭示了五个主题:有冲击力的视频、人文故事、历史和历史事实、媒体作为操纵者以及宗教。我们还观察到一些情况,即通常毒性更大的主题变得不那么有毒,而通常毒性较小的主题在涉及敏感元素(如政治和宗教)时变得“毒性化”。研究结果表明,新闻评论的毒性可以被描述为主题驱动的毒性,其针对的是主题,而不是针对用户或群体的报复性毒性。实际影响表明,新闻故事的人文框架(即通过真实的普通人来报道故事)可以降低原本毒性较大的主题的评论毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df9/7034861/9135b50df0fa/pone.0228723.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验