Suppr超能文献

在辱骂性语言训练数据的方向上,一项系统评价:垃圾进,垃圾出。

Directions in abusive language training data, a systematic review: Garbage in, garbage out.

机构信息

The Alan Turing Institute, London, United Kingdom.

Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark.

出版信息

PLoS One. 2020 Dec 28;15(12):e0243300. doi: 10.1371/journal.pone.0243300. eCollection 2020.

Abstract

Data-driven and machine learning based approaches for detecting, categorising and measuring abusive content such as hate speech and harassment have gained traction due to their scalability, robustness and increasingly high performance. Making effective detection systems for abusive content relies on having the right training datasets, reflecting a widely accepted mantra in computer science: Garbage In, Garbage Out. However, creating training datasets which are large, varied, theoretically-informed and that minimize biases is difficult, laborious and requires deep expertise. This paper systematically reviews 63 publicly available training datasets which have been created to train abusive language classifiers. It also reports on creation of a dedicated website for cataloguing abusive language data hatespeechdata.com. We discuss the challenges and opportunities of open science in this field, and argue that although more dataset sharing would bring many benefits it also poses social and ethical risks which need careful consideration. Finally, we provide evidence-based recommendations for practitioners creating new abusive content training datasets.

摘要

基于数据驱动和机器学习的方法在检测、分类和衡量恶意内容(如仇恨言论和骚扰)方面取得了进展,因为它们具有可扩展性、鲁棒性和越来越高的性能。要开发有效的恶意内容检测系统,需要有合适的训练数据集,这反映了计算机科学中一个广为接受的原则:垃圾进,垃圾出。然而,创建大规模、多样化、理论上有依据且最小化偏差的训练数据集是困难的、费力的,并且需要深厚的专业知识。本文系统地回顾了 63 个已创建用于训练恶意语言分类器的公开可用训练数据集,并报告了创建专门的辱骂语言数据目录网站 hatespeechdata.com 的情况。我们讨论了该领域开放科学的挑战和机遇,并认为虽然更多的数据共享将带来许多好处,但也带来了需要谨慎考虑的社会和伦理风险。最后,我们为创建新的恶意内容训练数据集的从业者提供了基于证据的建议。

相似文献

6
Hate speech detection: Challenges and solutions.仇恨言论检测:挑战与解决方案。
PLoS One. 2019 Aug 20;14(8):e0221152. doi: 10.1371/journal.pone.0221152. eCollection 2019.
10
Bias and comparison framework for abusive language datasets.辱骂性语言数据集的偏差与比较框架
AI Ethics. 2022;2(1):79-101. doi: 10.1007/s43681-021-00081-0. Epub 2021 Jul 19.

引用本文的文献

3
A survey on multi-lingual offensive language detection.一项关于多语言冒犯性语言检测的调查。
PeerJ Comput Sci. 2024 Mar 29;10:e1934. doi: 10.7717/peerj-cs.1934. eCollection 2024.
4
10
Asian hate speech detection on Twitter during COVID-19.新冠疫情期间推特上的反亚裔仇恨言论检测
Front Artif Intell. 2022 Aug 15;5:932381. doi: 10.3389/frai.2022.932381. eCollection 2022.

本文引用的文献

1
A manifesto for reproducible science.可重复科学宣言。
Nat Hum Behav. 2017 Jan 10;1(1):0021. doi: 10.1038/s41562-016-0021.
4
Psychology of personal data donation.个人数据捐赠的心理学。
PLoS One. 2019 Nov 20;14(11):e0224240. doi: 10.1371/journal.pone.0224240. eCollection 2019.
8
Quality of flow diagram in systematic review and/or meta-analysis.系统评价和/或荟萃分析中的流程图质量。
PLoS One. 2018 Jun 27;13(6):e0195955. doi: 10.1371/journal.pone.0195955. eCollection 2018.
10
Quantifying publication bias in meta-analysis.量化荟萃分析中的发表偏倚。
Biometrics. 2018 Sep;74(3):785-794. doi: 10.1111/biom.12817. Epub 2017 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验