Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA.
Cell. 2020 Feb 20;180(4):717-728.e19. doi: 10.1016/j.cell.2020.01.023.
Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.
消费硫代葡萄糖苷,在芸薹属蔬菜中丰富的前药样代谢物,与某些癌症风险降低有关。肠道微生物群具有代谢硫代葡萄糖苷的能力,生成化学预防的异硫氰酸酯。在这里,我们确定了肠道共生物种拟杆菌(Bacteroides thetaiotaomicron)将硫代葡萄糖苷激活为异硫氰酸酯的遗传和生化基础。使用全基因组转座子插入筛选,我们鉴定了拟杆菌属中硫代葡萄糖苷代谢所需的操纵子。在非代谢相关的脆弱拟杆菌(Bacteroides fragilis)中表达 BT2159-BT2156 导致获得了硫代葡萄糖苷代谢。我们表明,异硫氰酸酯的形成需要 BT2158 的作用,以及在体外 BT2156 或 BT2157 的作用。用突变体 BtΔ2157 单定植小鼠显示胃肠道中异硫氰酸酯的产生减少。这些数据为常见肠道细菌处理重要膳食营养素的机制提供了深入了解。