Suppr超能文献

高分辨率解析从小鼠胚胎成纤维细胞到纤维软骨细胞的化学重编程。

High-Resolution Dissection of Chemical Reprogramming from Mouse Embryonic Fibroblasts into Fibrocartilaginous Cells.

机构信息

Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.

Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.

出版信息

Stem Cell Reports. 2020 Mar 10;14(3):478-492. doi: 10.1016/j.stemcr.2020.01.013. Epub 2020 Feb 20.

Abstract

Articular cartilage injury and degeneration causing pain and loss of quality-of-life has become a serious problem for increasingly aged populations. Given the poor self-renewal of adult human chondrocytes, alternative functional cell sources are needed. Direct reprogramming by small molecules potentially offers an oncogene-free and cost-effective approach to generate chondrocytes, but has yet to be investigated. Here, we directly reprogrammed mouse embryonic fibroblasts into PRG4+ chondrocytes using a 3D system with a chemical cocktail, VCRTc (valproic acid, CHIR98014, Repsox, TTNPB, and celecoxib). Using single-cell transcriptomics, we revealed the inhibition of fibroblast features and activation of chondrogenesis pathways in early reprograming, and the intermediate cellular process resembling cartilage development. The in vivo implantation of chemical-induced chondrocytes at defective articular surfaces promoted defect healing and rescued 63.4% of mechanical function loss. Our approach directly converts fibroblasts into functional cartilaginous cells, and also provides insights into potential pharmacological strategies for future cartilage regeneration.

摘要

关节软骨损伤和退变导致疼痛和生活质量下降,已成为人口老龄化日益严重的严重问题。鉴于成人软骨细胞自我更新能力差,需要寻找其他功能性细胞来源。小分子的直接重编程可能提供了一种无致癌基因且具有成本效益的方法来生成软骨细胞,但尚未得到研究。在这里,我们使用一种化学鸡尾酒(VCRTc(丙戊酸、CHIR98014、Repsox、TTNPB 和塞来昔布)的 3D 系统,直接将小鼠胚胎成纤维细胞重编程为 PRG4+软骨细胞。通过单细胞转录组学,我们揭示了早期重编程过程中抑制成纤维细胞特征和激活软骨生成途径,以及类似于软骨发育的中间细胞过程。在有缺陷的关节表面植入化学诱导的软骨细胞可促进缺陷愈合,并挽救了 63.4%的机械功能丧失。我们的方法可直接将成纤维细胞转化为功能性软骨细胞,并为未来的软骨再生提供潜在的药物治疗策略提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f41/7066361/528971bb3905/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验