Suppr超能文献

干细胞生物学中的表型技术。

Phenotypic technologies in stem cell biology.

机构信息

Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.

出版信息

Cell Chem Biol. 2021 Mar 18;28(3):257-270. doi: 10.1016/j.chembiol.2021.02.001. Epub 2021 Mar 1.

Abstract

The high-throughput phenotypic screen (HTPS) has become an emerging technology to discover synthetic small molecules that regulate stem cell fates. Here, we review the application of HTPS to identify small molecules controlling stem cell renewal, reprogramming, differentiation, and lineage conversion. Moreover, we discuss the use of HTPS to discover small molecules/polymers mimicking the stem cell extracellular niche. Furthermore, HTPSs have been applied on whole-animal models to identify small molecules regulating stem cell renewal or differentiation in vivo. Finally, we discuss the examples of the utilization of HTPS in stem cell-based disease modeling, as well as in the discovery of novel drug candidates for cancer, diabetes, and infectious diseases. Overall, HTPSs have provided many powerful tools for the stem cell field, which not only facilitate the generation of functional cells/tissues for replacement therapy, disease modeling, and drug screening, but also help dissect molecular mechanisms regulating physiological and pathological processes.

摘要

高通量表型筛选(HTPS)已经成为一种新兴的技术,用于发现调控干细胞命运的合成小分子。在这里,我们综述了 HTPS 在鉴定控制干细胞更新、重编程、分化和谱系转换的小分子中的应用。此外,我们讨论了利用 HTPS 发现模拟干细胞细胞外微环境的小分子/聚合物。此外,HTPS 已经在全动物模型中应用于鉴定调控干细胞更新或分化的小分子。最后,我们讨论了 HTPS 在基于干细胞的疾病建模以及癌症、糖尿病和传染病新型药物候选物发现中的应用实例。总之,HTPS 为干细胞领域提供了许多强大的工具,不仅有助于为替代治疗、疾病建模和药物筛选生成功能性细胞/组织,还有助于剖析调控生理和病理过程的分子机制。

相似文献

1
Phenotypic technologies in stem cell biology.
Cell Chem Biol. 2021 Mar 18;28(3):257-270. doi: 10.1016/j.chembiol.2021.02.001. Epub 2021 Mar 1.
2
Screening-Based Chemical Approaches to Unravel Stem Cell Biology.
Stem Cell Reports. 2018 Dec 11;11(6):1312-1323. doi: 10.1016/j.stemcr.2018.11.012.
3
High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment.
Organogenesis. 2013 Jul-Sep;9(3):128-42. doi: 10.4161/org.25425. Epub 2013 Jun 20.
4
Systematic approaches to dissect biological processes in stem cells by image-based screening.
Biotechnol J. 2012 Jun;7(6):768-78. doi: 10.1002/biot.201200117.
6
Synthetic small molecules that control stem cell fate.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7632-7. doi: 10.1073/pnas.0732087100. Epub 2003 Jun 6.
9
Miniaturized platform for high-throughput screening of stem cells.
Curr Opin Biotechnol. 2017 Aug;46:141-149. doi: 10.1016/j.copbio.2017.03.005. Epub 2017 Apr 4.
10
Biomaterials meet microfluidics: building the next generation of artificial niches.
Curr Opin Biotechnol. 2011 Oct;22(5):690-7. doi: 10.1016/j.copbio.2011.07.001. Epub 2011 Aug 5.

引用本文的文献

1
Robust small molecule-aided cardiac reprogramming systems selective to cardiac fibroblasts.
iScience. 2023 Nov 14;26(12):108466. doi: 10.1016/j.isci.2023.108466. eCollection 2023 Dec 15.
4
Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming.
Front Bioeng Biotechnol. 2022 Jul 7;10:799152. doi: 10.3389/fbioe.2022.799152. eCollection 2022.
5
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs.
Cell Mol Life Sci. 2021 Dec;78(24):8127-8155. doi: 10.1007/s00018-021-03983-8. Epub 2021 Nov 16.

本文引用的文献

1
Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells.
Cell Chem Biol. 2020 Dec 17;27(12):1561-1572.e7. doi: 10.1016/j.chembiol.2020.08.018. Epub 2020 Oct 29.
2
Identification of SARS-CoV-2 inhibitors using lung and colonic organoids.
Nature. 2021 Jan;589(7841):270-275. doi: 10.1038/s41586-020-2901-9. Epub 2020 Oct 28.
3
A novel GSK3 inhibitor that promotes self-renewal in mouse embryonic stem cells.
Biosci Biotechnol Biochem. 2020 Oct;84(10):2113-2120. doi: 10.1080/09168451.2020.1789445. Epub 2020 Jul 8.
4
A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids.
Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7. doi: 10.1016/j.stem.2020.06.015. Epub 2020 Jun 19.
5
High-Resolution Dissection of Chemical Reprogramming from Mouse Embryonic Fibroblasts into Fibrocartilaginous Cells.
Stem Cell Reports. 2020 Mar 10;14(3):478-492. doi: 10.1016/j.stemcr.2020.01.013. Epub 2020 Feb 20.
9
The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery.
Cell Chem Biol. 2019 Aug 15;26(8):1050-1066. doi: 10.1016/j.chembiol.2019.05.007. Epub 2019 Jun 20.
10
Chemical screen for epigenetic barriers to single allele activation of Oct4.
Stem Cell Res. 2019 Jul;38:101470. doi: 10.1016/j.scr.2019.101470. Epub 2019 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验