Suppr超能文献

道路交通安全数据分析应用综述。第 1 部分:描述性和预测性建模。

A Review of Data Analytic Applications in Road Traffic Safety. Part 1: Descriptive and Predictive Modeling.

机构信息

Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA.

College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA.

出版信息

Sensors (Basel). 2020 Feb 18;20(4):1107. doi: 10.3390/s20041107.

Abstract

This part of the review aims to reduce the start-up burden of data collection and descriptive analytics for statistical modeling and route optimization of risk associated with motor vehicles. From a data-driven bibliometric analysis, we show that the literature is divided into two disparate research streams: (a) predictive or explanatory models that attempt to understand and quantify crash risk based on different driving conditions, and (b) optimization techniques that focus on minimizing crash risk through route/path-selection and rest-break scheduling. Translation of research outcomes between these two streams is limited. To overcome this issue, we present publicly available high-quality data sources (different study designs, outcome variables, and predictor variables) and descriptive analytic techniques (data summarization, visualization, and dimension reduction) that can be used to achieve safer-routing and provide code to facilitate data collection/exploration by practitioners/researchers. Then, we review the statistical and machine learning models used for crash risk modeling. We show that (near) real-time crash risk is rarely considered, which might explain why the optimization models (reviewed in Part 2) have not capitalized on the research outcomes from the first stream.

摘要

这部分综述旨在降低数据收集和统计建模的启动负担,并优化与机动车辆相关的风险的描述性分析。从数据驱动的文献计量分析中,我们可以看出,文献分为两个截然不同的研究流派:(a)预测或解释模型,旨在根据不同的驾驶条件来理解和量化碰撞风险;(b)优化技术,通过路线/路径选择和休息时间安排来最小化碰撞风险。这两个流派之间的研究成果转化有限。为了解决这个问题,我们提供了公开的高质量数据源(不同的研究设计、结果变量和预测变量)和描述性分析技术(数据汇总、可视化和降维),可用于实现更安全的路线规划,并为从业人员/研究人员提供代码来方便数据收集/探索。然后,我们回顾了用于碰撞风险建模的统计和机器学习模型。我们发现(接近)实时碰撞风险很少被考虑,这也许可以解释为什么优化模型(在第 2 部分中进行了回顾)没有利用第一流派的研究成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c4e/7070501/11431332f5df/sensors-20-01107-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验