Department of Biostatistics, Christian Medical College, Vellore 632002, India.
Department of Statistics, St. Thomas College, Palai, Kerala 686575, India.
Int J Environ Res Public Health. 2020 Feb 18;17(4):1318. doi: 10.3390/ijerph17041318.
The use of the harmonic regression model is well accepted in the epidemiological and biostatistical communities as a standard procedure to examine seasonal patterns in disease occurrence. While these models may provide good fit to periodic patterns with relatively symmetric rises and falls, for some diseases the incidence fluctuates in a more complex manner. We propose a two-step harmonic regression approach to improve the model fit for data exhibiting sharp seasonal peaks. To capture such specific behavior, we first build a basic model and estimate the seasonal peak. At the second step, we apply an extended model using sine and cosine transform functions. These newly proposed functions mimic a quadratic term in the harmonic regression models and thus allow us to better fit the seasonal spikes. We illustrate the proposed method using actual and simulated data and recommend the new approach to assess seasonality in a broad spectrum of diseases manifesting sharp seasonal peaks.
谐波回归模型在流行病学和生物统计学领域被广泛接受,是一种标准的方法,用于研究疾病发生的季节性模式。虽然这些模型可能适用于具有相对对称上升和下降的周期性模式,但对于某些疾病,发病率的波动方式更为复杂。我们提出了一种两步谐波回归方法,以改善对具有明显季节性高峰的数据的模型拟合。为了捕捉这种特定的行为,我们首先构建一个基本模型并估计季节性高峰。在第二步中,我们使用正弦和余弦变换函数应用扩展模型。这些新提出的函数模拟了谐波回归模型中的二次项,从而使我们能够更好地拟合季节性峰值。我们使用实际数据和模拟数据说明了所提出的方法,并推荐了新方法来评估广泛表现出明显季节性高峰的疾病的季节性。