Suppr超能文献

多对比度超分辨率 MRI 通过渐进式网络。

Multi-Contrast Super-Resolution MRI Through a Progressive Network.

出版信息

IEEE Trans Med Imaging. 2020 Sep;39(9):2738-2749. doi: 10.1109/TMI.2020.2974858. Epub 2020 Feb 18.

Abstract

Magnetic resonance imaging (MRI) is widely used for screening, diagnosis, image-guided therapy, and scientific research. A significant advantage of MRI over other imaging modalities such as computed tomography (CT) and nuclear imaging is that it clearly shows soft tissues in multi-contrasts. Compared with other medical image super-resolution methods that are in a single contrast, multi-contrast super-resolution studies can synergize multiple contrast images to achieve better super-resolution results. In this paper, we propose a one-level non-progressive neural network for low up-sampling multi-contrast super-resolution and a two-level progressive network for high up-sampling multi-contrast super-resolution. The proposed networks integrate multi-contrast information in a high-level feature space and optimize the imaging performance by minimizing a composite loss function, which includes mean-squared-error, adversarial loss, perceptual loss, and textural loss. Our experimental results demonstrate that 1) the proposed networks can produce MRI super-resolution images with good image quality and outperform other multi-contrast super-resolution methods in terms of structural similarity and peak signal-to-noise ratio; 2) combining multi-contrast information in a high-level feature space leads to a significantly improved result than a combination in the low-level pixel space; and 3) the progressive network produces a better super-resolution image quality than the non-progressive network, even if the original low-resolution images were highly down-sampled.

摘要

磁共振成像(MRI)广泛用于筛查、诊断、图像引导治疗和科学研究。与其他成像方式(如计算机断层扫描(CT)和核成像)相比,MRI 的一个显著优势是它可以清晰地显示多对比度的软组织。与其他仅在单一对比度下的医学图像超分辨率方法相比,多对比度超分辨率研究可以协同多个对比度图像以获得更好的超分辨率结果。在本文中,我们提出了一种用于低上采样多对比度超分辨率的单级非递进神经网络和一种用于高上采样多对比度超分辨率的两级递进网络。所提出的网络在高级特征空间中集成多对比度信息,并通过最小化包括均方误差、对抗损失、感知损失和纹理损失的复合损失函数来优化成像性能。我们的实验结果表明:1)所提出的网络可以生成具有良好图像质量的 MRI 超分辨率图像,在结构相似性和峰值信噪比方面优于其他多对比度超分辨率方法;2)在高级特征空间中组合多对比度信息比在低级像素空间中组合更能显著提高结果;3)即使原始低分辨率图像被高度下采样,渐进网络也能产生比非渐进网络更好的超分辨率图像质量。

相似文献

1
Multi-Contrast Super-Resolution MRI Through a Progressive Network.
IEEE Trans Med Imaging. 2020 Sep;39(9):2738-2749. doi: 10.1109/TMI.2020.2974858. Epub 2020 Feb 18.

引用本文的文献

1
FDoSR-Net: Frequency-Domain Informed Auto-Encoder Network for Arbitrary-Scale 3D Whole-Heart MRI Super-Resolution.
Bioengineering (Basel). 2025 Jan 30;12(2):129. doi: 10.3390/bioengineering12020129.
3
Dataset augmentation with multiple contrasts images in super-resolution processing of T1-weighted brain magnetic resonance images.
Radiol Phys Technol. 2025 Mar;18(1):172-185. doi: 10.1007/s12194-024-00871-1. Epub 2024 Dec 16.
4
NExpR: Neural Explicit Representation for fast arbitrary-scale medical image super-resolution.
Comput Biol Med. 2025 Jan;184:109354. doi: 10.1016/j.compbiomed.2024.109354. Epub 2024 Nov 26.
5
A Single-Frame and Multi-Frame Cascaded Image Super-Resolution Method.
Sensors (Basel). 2024 Aug 28;24(17):5566. doi: 10.3390/s24175566.
6
Super-resolution reconstruction for early cervical cancer magnetic resonance imaging based on deep learning.
Biomed Eng Online. 2024 Aug 22;23(1):84. doi: 10.1186/s12938-024-01281-5.
7
Let UNet Play an Adversarial Game: Investigating the Effect of Adversarial Training in Enhancing Low-Resolution MRI.
J Imaging Inform Med. 2025 Feb;38(1):629-645. doi: 10.1007/s10278-024-01205-8. Epub 2024 Jul 31.
9
Elevating Chest X-ray Image Super-Resolution with Residual Network Enhancement.
J Imaging. 2024 Mar 4;10(3):64. doi: 10.3390/jimaging10030064.

本文引用的文献

1
Coupled Dictionary Learning for Multi-Contrast MRI Reconstruction.
IEEE Trans Med Imaging. 2020 Mar;39(3):621-633. doi: 10.1109/TMI.2019.2932961. Epub 2019 Aug 2.
2
Fusing multi-scale information in convolution network for MR image super-resolution reconstruction.
Biomed Eng Online. 2018 Aug 25;17(1):114. doi: 10.1186/s12938-018-0546-9.
3
Simultaneous single- and multi-contrast super-resolution for brain MRI images based on a convolutional neural network.
Comput Biol Med. 2018 Aug 1;99:133-141. doi: 10.1016/j.compbiomed.2018.06.010. Epub 2018 Jun 14.
4
3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1522-1534. doi: 10.1109/TMI.2018.2832217.
5
Super-resolution musculoskeletal MRI using deep learning.
Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26.
6
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
7
Vision 20/20: Simultaneous CT-MRI--Next chapter of multimodality imaging.
Med Phys. 2015 Oct;42(10):5879-89. doi: 10.1118/1.4929559.
8
MRI upsampling using feature-based nonlocal means approach.
IEEE Trans Med Imaging. 2014 Oct;33(10):1969-85. doi: 10.1109/TMI.2014.2329271. Epub 2014 Jun 12.
9
PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information.
Magn Reson Med. 2015 Feb;73(2):523-35. doi: 10.1002/mrm.25142. Epub 2014 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验