Suppr超能文献

HY5-HDA9 模块通过转录调控植物自噬响应光暗转换和氮饥饿。

HY5-HDA9 Module Transcriptionally Regulates Plant Autophagy in Response to Light-to-Dark Conversion and Nitrogen Starvation.

机构信息

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.

College of Life Sciences, Leshan Normal University, Leshan 614004, China.

出版信息

Mol Plant. 2020 Mar 2;13(3):515-531. doi: 10.1016/j.molp.2020.02.011. Epub 2020 Feb 19.

Abstract

Light is arguably one of the most important environmental factors that determines virtually all aspects of plant growth and development, but the molecular link between light signaling and the autophagy pathway has not been elucidated in plants. In this study, we demonstrate that autophagy is activated during light-to-dark conversion though transcriptional upregulation of autophagy-related genes (ATGs). We showed that depletion of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to enhanced autophagy activity and resistance to extended darkness and nitrogen starvation treatments, contributing to higher expression of ATGs. HY5 interacts with and recruits HISTONE DEACETYLASE 9 (HDA9) to ATG5 and ATG8e loci to repress their expression by deacetylation of the Lys9 and Lys27 of histone 3. Furthermore, we found that both darkness and nitrogen depletion induce the degradation of HY5 via 26S proteasome and the concomitant disassociation of HDA9 from ATG5 and ATG8e loci, leading to their depression and thereby activated autophagy. Genetic analysis further confirmed that HY5 and HDA9 act synergistically and function upstream of the autophagy pathway. Collectively, our study unveils a previously unknown transcriptional and epigenetic network that regulates autophagy in response to light-to-dark conversion and nitrogen starvation in plants.

摘要

光可以说是决定植物生长和发育几乎所有方面的最重要的环境因素之一,但在植物中,光信号转导与自噬途径之间的分子联系尚未阐明。在这项研究中,我们证明了自噬是通过自噬相关基因(ATG)的转录上调在光到暗的转换过程中被激活的。我们表明,作为光信号关键组成部分的 ELONGATED HYPOCOTYL 5(HY5)的缺失会导致自噬活性增强,并对延长的黑暗和氮饥饿处理产生抗性,从而导致 ATG 更高的表达。HY5 与 HISTONE DEACETYLASE 9(HDA9)相互作用并将其募集到 ATG5 和 ATG8e 基因座,通过组蛋白 3 的 Lys9 和 Lys27 的去乙酰化来抑制它们的表达。此外,我们发现黑暗和氮饥饿都能诱导 HY5 通过 26S 蛋白酶体降解,同时 HDA9 从 ATG5 和 ATG8e 基因座解离,导致它们的下调,从而激活自噬。遗传分析进一步证实,HY5 和 HDA9 协同作用,在自噬途径的上游发挥作用。总的来说,我们的研究揭示了一个以前未知的转录和表观遗传网络,该网络调节植物对光到暗转换和氮饥饿的自噬。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验