Department of Physics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Japan.
Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain.
J Chem Phys. 2020 Feb 21;152(7):074204. doi: 10.1063/1.5139284.
Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.
鉴定有缺陷的 DNA 结构是一项艰巨的任务,因为碱基对键合的微小差异隐藏在通常随机碱基对序列的局部结构可变性中。缺陷,如碱基错配、缺失碱基、交联等,在 DNA 中频繁发生,必须有效地识别和修复,以避免遗传突变等严重后果。在这里,我们专注于检测碱基错配,这是偏离理想沃森-克里克配对规则的局部偏差,可能主要源于 DNA 复制过程、外来化学攻击或电离辐射。碱基错配缺陷的实验检测需要测量自由能和分子结构的微小偏差的能力。我们在双链 DNA 手柄之间夹入短 DNA 发夹(10 或 20 个碱基加 4 个碱基环)中引入不同的错配,以便在使用光学镊子的单分子力谱学中使用。我们进行跳跃和拉力实验,以测量过剩的自由能,并从力-距离曲线推断出错配的特征动力学特征。全原子分子动力学模拟为详细解释实验数据提供了支持。在这种实验技术的最低灵敏度限制下进行的此类测量证明了在随机互补双链 DNA 序列中识别错配存在的能力,并为区分不同结构缺陷的能力提供了下限。