Suppr超能文献

不断进化的复杂性:偶然事件如何塑造细胞、软件和生态网络。

Evolving complexity: how tinkering shapes cells, software and ecological networks.

机构信息

ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain.

Institut de Biologia Evolutiva (UPF-CSIC), Pg. Maritim 37, Barcelona 08003, Spain.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190325. doi: 10.1098/rstb.2019.0325. Epub 2020 Feb 24.

Abstract

A common trait of complex systems is that they can be represented by means of a network of interacting parts. It is, in fact, the network organization (more than the parts) that largely conditions most higher-level properties, which are not reducible to the properties of the individual parts. Can the topological organization of these webs provide some insight into their evolutionary origins? Both biological and artificial networks share some common architectural traits. They are often heterogeneous and sparse, and most exhibit different types of correlations, such as nestedness, modularity or hierarchical patterns. These properties have often been attributed to the selection of functionally meaningful traits. However, a proper formulation of generative network models suggests a rather different picture. Against the standard selection-optimization argument, some networks reveal the inevitable generation of complex patterns resulting from reuse and can be modelled using duplication-rewiring rules lacking functionality. These give rise to the observed heterogeneous, scale-free and modular architectures. Here, we examine the evidence for tinkering in cellular, technological and ecological webs and its impact in shaping their architecture. Our analysis suggests a serious consideration of the role played by selection as the origin of network topology. Instead, we suggest that the amplification processes associated with reuse might shape these graphs at the topological level. In biological systems, selection forces would take advantage of emergent patterns. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

复杂系统的一个共同特征是,它们可以通过相互作用的部分网络来表示。事实上,正是网络组织(而不是部分)在很大程度上决定了大多数更高层次的特性,这些特性不能简化为单个部分的特性。这些网络的拓扑组织能否提供一些关于其进化起源的见解?生物和人工网络都具有一些共同的结构特征。它们通常是异构的和稀疏的,并且大多数表现出不同类型的相关性,例如嵌套性、模块性或层次模式。这些特性通常归因于对功能有意义的特性的选择。然而,生成网络模型的适当表述给出了一个相当不同的图景。与标准的选择-优化论点相反,一些网络揭示了复杂模式的不可避免的产生,这些模式是由于重用而产生的,可以使用缺乏功能的复制重连规则进行建模。这导致了观察到的异构、无标度和模块化结构。在这里,我们研究了细胞、技术和生态网络中的修补作用的证据及其对塑造其结构的影响。我们的分析表明,需要认真考虑选择作为网络拓扑起源的作用。相反,我们认为与重用相关的放大过程可能会在拓扑层面上塑造这些图。在生物系统中,选择力将利用新兴模式。本文是“统一生物网络的基本概念:生物学见解和哲学基础”主题问题的一部分。

相似文献

1
Evolving complexity: how tinkering shapes cells, software and ecological networks.不断进化的复杂性:偶然事件如何塑造细胞、软件和生态网络。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190325. doi: 10.1098/rstb.2019.0325. Epub 2020 Feb 24.
5
The architecture of mutualistic networks as an evolutionary spandrel.互惠共生网络的结构是进化的副产物。
Nat Ecol Evol. 2018 Jan;2(1):94-99. doi: 10.1038/s41559-017-0383-4. Epub 2017 Nov 20.
6
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.
8
From inert matter to the global society life as multi-level networks of processes.从惰性物质到作为多层次过程网络的全球社会生命。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190329. doi: 10.1098/rstb.2019.0329. Epub 2020 Feb 24.
9
Nestedness across biological scales.跨生物尺度的嵌套性。
PLoS One. 2017 Feb 6;12(2):e0171691. doi: 10.1371/journal.pone.0171691. eCollection 2017.
10
Exploring modularity in biological networks.探索生物网络的模块性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190316. doi: 10.1098/rstb.2019.0316. Epub 2020 Feb 24.

引用本文的文献

2
Open problems in synthetic multicellularity.合成多细胞性中的开放性问题。
NPJ Syst Biol Appl. 2024 Dec 31;10(1):151. doi: 10.1038/s41540-024-00477-8.
4
The cultural transmission of tacit knowledge.隐性知识的文化传递。
J R Soc Interface. 2022 Oct;19(195):20220238. doi: 10.1098/rsif.2022.0238. Epub 2022 Oct 19.

本文引用的文献

1
A network approach to brain form, cortical topology and human evolution.一种大脑形态、皮质拓扑和人类进化的网络方法。
Brain Struct Funct. 2019 Jul;224(6):2231-2245. doi: 10.1007/s00429-019-01900-1. Epub 2019 Jun 12.
2
Network motifs and their origins.网络模式及其起源。
PLoS Comput Biol. 2019 Apr 11;15(4):e1006749. doi: 10.1371/journal.pcbi.1006749. eCollection 2019 Apr.
3
The morphospace of language networks.语言网络的形态空间。
Sci Rep. 2018 Jul 11;8(1):10465. doi: 10.1038/s41598-018-28820-0.
4
Network spandrels reflect ecological assembly.网络支架反映生态组合。
Ecol Lett. 2018 Mar;21(3):324-334. doi: 10.1111/ele.12912. Epub 2018 Jan 29.
5
The architecture of mutualistic networks as an evolutionary spandrel.互惠共生网络的结构是进化的副产物。
Nat Ecol Evol. 2018 Jan;2(1):94-99. doi: 10.1038/s41559-017-0383-4. Epub 2017 Nov 20.
6
Breakdown of Modularity in Complex Networks.复杂网络中模块性的分解
Front Physiol. 2017 Jul 13;8:497. doi: 10.3389/fphys.2017.00497. eCollection 2017.
7
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
8
Major transitions in information technology.信息技术的重大变革。
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2015.0450.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验