Suppr超能文献

生态网络分析的层次转变揭示了不同的系统特性。

Shifting levels of ecological network's analysis reveals different system properties.

机构信息

CNRS/Normandie Université, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), MNHN, CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, team EcoFunc, CS 14032, 14000 Caen, France.

Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190326. doi: 10.1098/rstb.2019.0326. Epub 2020 Feb 24.

Abstract

Network analyses applied to models of complex systems generally contain at least three levels of analyses. Whole-network metrics summarize general organizational features (properties or relationships) of the entire network, while node-level metrics summarize similar organization features but consider individual nodes. The network- and node-level metrics build upon the primary pairwise relationships in the model. As with many analyses, sometimes there are interesting differences at one level that disappear in the summary at another level of analysis. We illustrate this phenomenon with ecosystem network models, where nodes are trophic compartments and pairwise relationships are flows of organic carbon, such as when a predator eats a prey. For this demonstration, we analysed a time-series of 16 models of a lake planktonic food web that describes carbon exchanges within an autumn cyanobacteria bloom and compared the ecological conclusions drawn from the three levels of analysis based on inter-time-step comparisons. A general pattern in our analyses was that the closer the levels are in hierarchy (node versus network, or flow versus node level), the more they tend to align in their conclusions. Our analyses suggest that selecting the appropriate level of analysis, and above all regularly using multiple levels, may be a critical analytical decision. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

网络分析应用于复杂系统模型通常至少包含三个分析层次。全网络指标总结了整个网络的一般组织特征(属性或关系),而节点级指标则总结了类似的组织特征,但考虑了单个节点。网络和节点级指标建立在模型的主要成对关系之上。与许多分析一样,有时在一个层次上存在有趣的差异,而在另一个分析层次上的总结中则消失了。我们用生态系统网络模型来说明这种现象,其中节点是营养级,成对关系是有机碳的流动,例如捕食者吃猎物。为了进行此演示,我们分析了一个湖泊浮游生物食物网的 16 个模型的时间序列,这些模型描述了秋季蓝藻水华期间碳的交换,并根据时间步长的比较比较了基于这三个分析层次得出的生态结论。在我们的分析中,一个普遍的模式是,层次越接近(节点与网络,或流与节点级别),它们在结论上就越趋于一致。我们的分析表明,选择适当的分析层次,尤其是经常使用多个层次,可能是一个关键的分析决策。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。

相似文献

1
Shifting levels of ecological network's analysis reveals different system properties.生态网络分析的层次转变揭示了不同的系统特性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190326. doi: 10.1098/rstb.2019.0326. Epub 2020 Feb 24.

本文引用的文献

1
The structure and dynamics of multilayer networks.多层网络的结构与动态特性
Phys Rep. 2014 Nov 1;544(1):1-122. doi: 10.1016/j.physrep.2014.07.001. Epub 2014 Jul 10.
2
Exploring modularity in biological networks.探索生物网络的模块性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190316. doi: 10.1098/rstb.2019.0316. Epub 2020 Feb 24.
3
From inert matter to the global society life as multi-level networks of processes.从惰性物质到作为多层次过程网络的全球社会生命。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190329. doi: 10.1098/rstb.2019.0329. Epub 2020 Feb 24.
4
General theory of topological explanations and explanatory asymmetry.拓扑解释的一般理论与解释的不对称性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.
7
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
9
Food webs: reconciling the structure and function of biodiversity.食物网:协调生物多样性的结构和功能
Trends Ecol Evol. 2012 Dec;27(12):689-97. doi: 10.1016/j.tree.2012.08.005. Epub 2012 Sep 5.
10
The more food webs change, the more they stay the same.食物网变化得越多,它们保持不变的程度就越高。
Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27;364(1524):1789-801. doi: 10.1098/rstb.2008.0273.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验