Suppr超能文献

通过开发深度学习稳定微结构估计器实现1.5T/3T扩散加权磁共振成像的协调

Harmonizing 1.5T/3T Diffusion Weighted MRI through Development of Deep Learning Stabilized Microarchitecture Estimators.

作者信息

Nath Vishwesh, Remedios Samuel, Parvathaneni Prasanna, Hansen Colin B, Bayrak Roza G, Bermudez Camilo, Blaber Justin A, Schilling Kurt G, Janve Vaibhav A, Gao Yurui, Huo Yuankai, Lyu Ilwoo, Williams Owen, Resnick Susan, Beason-Held Lori, Rogers Baxter P, Stepniewska Iwona, Anderson Adam W, Landman Bennett A

机构信息

Computer Science, Vanderbilt University, Nashville, TN.

Dept. of Computer Science, Middle Tennessee State University.

出版信息

Proc SPIE Int Soc Opt Eng. 2019 Feb;10949. doi: 10.1117/12.2512902. Epub 2019 Mar 15.

Abstract

Diffusion weighted magnetic resonance imaging (DW-MRI) is interpreted as a quantitative method that is sensitive to tissue microarchitecture at a millimeter scale. However, the sensitization is dependent on acquisition sequences (e.g., diffusion time, gradient strength, etc.) and susceptible to imaging artifacts. Hence, comparison of quantitative DW-MRI biomarkers across field strengths (including different scanners, hardware performance, and sequence design considerations) is a challenging area of research. We propose a novel method to estimate microstructure using DW-MRI that is robust to scanner difference between 1.5T and 3T imaging. We propose to use a null space deep network (NSDN) architecture to model DW-MRI signal as fiber orientation distributions (FOD) to represent tissue microstructure. The NSDN approach is consistent with histologically observed microstructure (on previously acquired ex vivo squirrel monkey dataset) and scan-rescan data. The contribution of this work is that we incorporate identical dual networks (IDN) to minimize the influence of scanner effects via scan-rescan data. Briefly, our estimator is trained on two datasets. First, a histology dataset was acquired on three squirrel monkeys with corresponding DW-MRI and confocal histology (512 independent voxels). Second, 37 control subjects from the Baltimore Longitudinal Study of Aging (67-95 y/o) were identified who had been scanned at 1.5T and 3T scanners (b-value of 700 s/mm, voxel resolution at 2.2mm, 30-32 gradient volumes) with an average interval of 4 years (standard deviation 1.3 years). After image registration, we used paired white matter (WM) voxels for 17 subjects and 440 histology voxels for training and 20 subjects and 72 histology voxels for testing. We compare the proposed estimator with super-resolved constrained spherical deconvolution (CSD) and a previously presented regression deep neural network (DNN). NSDN outperformed CSD and DNN in angular correlation coefficient (ACC) 0.81 versus 0.28 and 0.46, mean squared error (MSE) 0.001 versus 0.003 and 0.03, and general fractional anisotropy (GFA) 0.05 versus 0.05 and 0.09. Further validation and evaluation with contemporaneous imaging are necessary, but the NSDN is promising avenue for building understanding of microarchitecture in a consistent and device-independent manner.

摘要

扩散加权磁共振成像(DW-MRI)被视为一种对毫米尺度的组织微观结构敏感的定量方法。然而,这种敏感性取决于采集序列(例如,扩散时间、梯度强度等),并且容易受到成像伪影的影响。因此,跨场强比较定量DW-MRI生物标志物(包括不同的扫描仪、硬件性能和序列设计考虑因素)是一个具有挑战性的研究领域。我们提出了一种使用DW-MRI估计微观结构的新方法,该方法对于1.5T和3T成像之间的扫描仪差异具有鲁棒性。我们建议使用零空间深度网络(NSDN)架构将DW-MRI信号建模为纤维方向分布(FOD),以表示组织微观结构。NSDN方法与组织学观察到的微观结构(在先前获取的离体松鼠猴数据集上)和重扫数据一致。这项工作的贡献在于,我们纳入了相同的双网络(IDN),以通过重扫数据最小化扫描仪效应的影响。简而言之,我们的估计器在两个数据集上进行训练。首先,在三只松鼠猴上采集了组织学数据集,并配有相应的DW-MRI和共聚焦组织学(5,12个独立体素)。其次,从巴尔的摩纵向衰老研究中确定了37名对照受试者(年龄在67 - 95岁之间),他们在1.5T和3T扫描仪上进行了扫描(b值为700 s/mm²,体素分辨率为2.2mm,30 - 32个梯度体积),平均间隔为4年(标准差为1.3年)。在图像配准后,我们使用了17名受试者的配对白质(WM)体素和440个组织学体素进行训练,以及20名受试者和72个组织学体素进行测试。我们将提出的估计器与超分辨约束球形反卷积(CSD)和先前提出的回归深度神经网络(DNN)进行了比较。NSDN在角相关系数(ACC)方面优于CSD和DNN,分别为0.81对0.28和0.46,均方误差(MSE)为0.001对0.003和0.03,以及广义分数各向异性(GFA)为0.05对0.05和0.09。需要使用同期成像进行进一步的验证和评估,但NSDN是一种有前景的途径,有望以一致且与设备无关的方式增进对微观结构的理解。

相似文献

6
Deep Constrained Spherical Deconvolution for Robust Harmonization.用于稳健协调的深度约束球面反卷积
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654398. Epub 2023 Apr 3.

引用本文的文献

4
LEARNING 3D WHITE MATTER MICROSTRUCTURE FROM 2D HISTOLOGY.从二维组织学中学习三维白质微观结构。
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:186-190. doi: 10.1109/isbi.2019.8759388. Epub 2019 Jul 11.

本文引用的文献

3
Harmonization of multi-site diffusion tensor imaging data.多部位弥散张量成像数据的调和。
Neuroimage. 2017 Nov 1;161:149-170. doi: 10.1016/j.neuroimage.2017.08.047. Epub 2017 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验