Computer Science, Vanderbilt University, Nashville, TN, USA.
Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Magn Reson Imaging. 2019 Oct;62:220-227. doi: 10.1016/j.mri.2019.07.012. Epub 2019 Jul 16.
Diffusion-weighted magnetic resonance imaging (DW-MRI) is of critical importance for characterizing in-vivo white matter. Models relating microarchitecture to observed DW-MRI signals as a function of diffusion sensitization are the lens through which DW-MRI data are interpreted. Numerous modern approaches offer opportunities to assess more complex intra-voxel structures. Nevertheless, there remains a substantial gap between intra-voxel estimated structures and ground truth captured by 3-D histology.
Herein, we propose a novel data-driven approach to model the non-linear mapping between observed DW-MRI signals and ground truth structures using a sequential deep neural network regression using residual block deep neural network (ResDNN). Training was performed on two 3-D histology datasets of squirrel monkey brains and validated on a third. A second validation was performed using scan-rescan datasets of 12 subjects from Human Connectome Project. The ResDNN was compared with multiple micro-structure reconstruction methods and super resolved-constrained spherical deconvolution (sCSD) in particular as baseline for both the validations.
Angular correlation coefficient (ACC) is a correlation/similarity measure and can be interpreted as accuracy when compared with a ground truth. The median ACC of ResDNN is 0.82 and median ACC's of different variants of CSD are 0.75, 0.77, 0.79. The mean, median and std. of ResDNN & sCSD ACC across 12 subjects from HCP are 0.74, 0.88, 0.31 and 0.61, 0.71, 0.31 respectively.
This work highlights the ability of deep learning to capture linkages between ex-vivo ground truth data with feasible MRI sequences. The data-driven approach is applicable to human in-vivo data and results in intriguingly high reproducibility of orientation structure.
扩散加权磁共振成像(DW-MRI)对于表征体内白质至关重要。将微结构与观察到的 DW-MRI 信号相关联的模型作为解释 DW-MRI 数据的镜头,这些信号作为扩散敏化的函数。许多现代方法提供了评估更复杂的体素内结构的机会。然而,在体素内估计的结构与通过 3D 组织学捕获的真实结构之间仍然存在很大差距。
本文提出了一种新的数据驱动方法,使用基于残差块深度神经网络(ResDNN)的顺序深度神经网络回归来模拟观察到的 DW-MRI 信号与ground truth 结构之间的非线性映射。在两个松鼠猴大脑的 3D 组织学数据集上进行了训练,并在第三个数据集上进行了验证。第二个验证是使用人类连接组计划的 12 个受试者的扫描-扫描数据集进行的。将 ResDNN 与多种微结构重建方法进行了比较,特别是与超分辨约束球分解(sCSD)进行了比较,作为这两种验证的基线。
角相关系数(ACC)是一种相关/相似性度量,可以与ground truth 进行比较,解释为准确性。ResDNN 的中位数 ACC 为 0.82,CSD 的不同变体的中位数 ACC 为 0.75、0.77、0.79。HCP 中 12 个受试者的 ResDNN 和 sCSD 的平均值、中位数和标准差分别为 0.74、0.88、0.31 和 0.61、0.71、0.31。
这项工作强调了深度学习捕捉离体 ground truth 数据与可行 MRI 序列之间联系的能力。数据驱动方法适用于人体体内数据,并产生了令人着迷的高重复性方向结构。