Suppr超能文献

一种基于线性独立性假设的高效且可验证的混合比例估计方法。

An Efficient and Provable Approach for Mixture Proportion Estimation Using Linear Independence Assumption.

作者信息

Yu Xiyu, Liu Tongliang, Gong Mingming, Batmanghelich Kayhan, Tao Dacheng

机构信息

UBTECH Sydney AI Centre, SIT, FEIT, The University of Sydney, Australia.

Department of Biomedical Informatics, University of Pittsburgh.

出版信息

Conf Comput Vis Pattern Recognit Workshops. 2018 Jun;2018:4480-4489. doi: 10.1109/CVPR.2018.00471. Epub 2018 Dec 17.

Abstract

In this paper, we study the mixture proportion estimation (MPE) problem in a new setting: given samples from the mixture and the component distributions, we identify the proportions of the components in the mixture distribution. To address this problem, we make use of a linear independence assumption, i.e., the component distributions are independent from each other, which is much weaker than assumptions exploited in the previous MPE methods. Based on this assumption, we propose a method (1) that uniquely identifies the mixture proportions, (2) whose output provably converges to the optimal solution, and (3) that is computationally efficient. We show the superiority of the proposed method over the state-of-the-art methods in two applications including learning with label noise and semi-supervised learning on both synthetic and real-world datasets.

摘要

在本文中,我们在一种新的设定下研究混合比例估计(MPE)问题:给定来自混合分布和各成分分布的样本,我们要确定混合分布中各成分的比例。为解决此问题,我们利用线性独立性假设,即各成分分布相互独立,这一假设比先前MPE方法中所采用的假设要弱得多。基于此假设,我们提出一种方法:(1)能唯一确定混合比例;(2)其输出可证明收敛到最优解;(3)计算效率高。我们在包括带标签噪声学习和半监督学习的两个应用中,在合成数据集和真实世界数据集上展示了所提方法相对于现有最先进方法的优越性。

相似文献

2
New semi-supervised classification method based on modified cluster assumption.基于改进聚类假设的新半监督分类方法。
IEEE Trans Neural Netw Learn Syst. 2012 May;23(5):689-702. doi: 10.1109/TNNLS.2012.2186825.
3
Component selection for exponential power mixture models.指数幂混合模型的组件选择
J Appl Stat. 2021 Oct 22;50(2):291-314. doi: 10.1080/02664763.2021.1990225. eCollection 2023.
4
Efficient greedy learning of gaussian mixture models.高斯混合模型的高效贪婪学习
Neural Comput. 2003 Feb;15(2):469-85. doi: 10.1162/089976603762553004.
5
Spectral Learning for Supervised Topic Models.监督主题模型的谱学习。
IEEE Trans Pattern Anal Mach Intell. 2018 Mar;40(3):726-739. doi: 10.1109/TPAMI.2017.2682085. Epub 2017 Mar 15.
6
Label Information Guided Graph Construction for Semi-Supervised Learning.基于标签信息引导的图构建的半监督学习方法。
IEEE Trans Image Process. 2017 Sep;26(9):4182-4192. doi: 10.1109/TIP.2017.2703120. Epub 2017 May 18.

引用本文的文献

1
Label-Noise Robust Domain Adaptation.标签噪声鲁棒域适应
Proc Mach Learn Res. 2020 Jul;119:10913-10924.

本文引用的文献

1
Progressive Stochastic Learning for Noisy Labels.针对噪声标签的渐进式随机学习
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):5136-5148. doi: 10.1109/TNNLS.2018.2792062. Epub 2018 Feb 5.
2
Multiclass Learning With Partially Corrupted Labels.多类学习中的部分标签损坏问题。
IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2568-2580. doi: 10.1109/TNNLS.2017.2699783. Epub 2017 May 16.
4
Classification with Noisy Labels by Importance Reweighting.基于重要性重加权的含噪标签分类。
IEEE Trans Pattern Anal Mach Intell. 2016 Mar;38(3):447-61. doi: 10.1109/TPAMI.2015.2456899.
5
Classification in the presence of label noise: a survey.带标签噪声的分类:综述。
IEEE Trans Neural Netw Learn Syst. 2014 May;25(5):845-69. doi: 10.1109/TNNLS.2013.2292894.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验