Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco.
Chem Rec. 2020 Aug;20(8):753-772. doi: 10.1002/tcr.201900089. Epub 2020 Feb 24.
Tremendous interest was recently devoted to the preparation of porous and functional materials through sustainable route, including primarily the use of renewable biopolymers instead of petroleum-sourced synthetic chemicals. Among the biopolymers available in enormous quantity, chitosan - obtained by deacetylation of chitin - stands as the sole nitrogen-containing cationic amino-sugar carbohydrate. This distinctively provides chitosan derivatives with plenty of opportunities in materials science. Particularly, its pH switchable solubility allowed the preparation of three-dimensional entangled nanofibrillated self-standing microspheres. These porous hydrogels behave as nano-reactors to confine exogenous nanoobjects within the polysaccharide network, including sol-gel metal alkoxide species, organometallic derivatives and isotropic and oriented nanoparticles. Besides, the interfacial interplay of chitosan with lamellar clay and graphene oxide allowed the penetration of the biopolymer inside of the galleries, which result in a complete delamination of the layered nanomaterials. The preserved gelation memory of chitosan in these formulations provides a way to access porous microspheres entangling exfoliated nanometric sheets. CO supercritical drying of functional hydrogel beads enabled efficient removal of water and other liquid solvents without wall collapsing, allowing large-scale preparation of millimetric hydrocolloidal microspheres with an open macroporous network. These functionalized lightweight biopolymer aerogels find applications in heterogeneous catalysis, sensing, adsorption, insulation and for the design of other sophisticated porous nanostructures. Beyond their tailorable molecular and textural-engineering, the possibility for macroscopic shaping of these intriguing nanostructures opens many new opportunities, especially in additive-manufacturing for soft and hybrid robotics.
最近,人们对通过可持续途径制备多孔和功能性材料产生了浓厚的兴趣,其中主要包括使用可再生的生物聚合物代替石油基合成化学品。在大量可用的生物聚合物中,壳聚糖 - 通过甲壳素脱乙酰化得到 - 是唯一含氮阳离子氨基糖碳水化合物。这为壳聚糖衍生物在材料科学中提供了大量的机会。特别是,其 pH 值可切换的溶解度允许制备三维缠结的纳米原纤维自支撑微球。这些多孔水凝胶作为纳米反应器,将外源纳米物体限制在多糖网络内,包括溶胶-凝胶金属醇盐物种、有机金属衍生物以及各向同性和取向的纳米颗粒。此外,壳聚糖与层状粘土和氧化石墨烯的界面相互作用允许生物聚合物渗透到层间,从而导致层状纳米材料的完全剥离。在这些配方中,壳聚糖的凝胶化记忆得以保留,为获得缠结剥离纳米级薄片的多孔微球提供了一种方法。功能水凝胶珠的 CO2 超临界干燥允许在不坍塌壁的情况下有效去除水和其他液体溶剂,从而能够大规模制备具有开放大孔网络的毫米级水凝胶微球。这些功能化的轻量级生物聚合物气凝胶在多相催化、传感、吸附、隔热以及设计其他复杂的多孔纳米结构中得到了应用。除了可定制的分子和结构工程外,这些有趣的纳米结构的宏观成型的可能性为软机器人和混合机器人的增材制造开辟了许多新的机会。